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The next 90 minutes of your life

* Data Assimilation Introit
* Different
methodologies
* Barnes
Analysis

in IDV
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Hurricane Ivan

September 9, 2004

5 AM EDT Thursday

NWS TPC/Mational Hurricane Center
Advisory 28

Current Center Location 13.9 N 70.0 W
Max Sustained Wind 160 mph

Curren t Movement tWNWat 15mph |

NWP Error Sources

1. Intrinsic Predictability i
Limitations B I
a) Isthe system inherently s
chaotic?
2. Errors in the Model

a) Does the model represent the - iy
system correctly? S T

b) Is model resolution sufficient? > =

c) Are unresolved physical
processes well parameterized?

3. Errors in the Initial
Conditions and Boundary
Conditions
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Data Assimilation Introit

Data assimilation is the oo O s
. B e e Ve e
procedure of getting the e
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information content of
observations into the numerical
modeling system.
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The output of data assimilation is
a maximum likelihood (optimal)
estimate of the atmosphere,
called an analysis, which can be
used as the initial conditions for a
numerical model.
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Data Assimilation Introit

Optimal analysis of the atmosphere obtained by
combining a model forecast (first guess / background
field) with observations.

Some issues to attend to with data:

e Data can be anything, and sometimes can be
parameters that are not the fundamental state variables
of the governing equations (radiance, for example)

e Data can be of varying quality (instrument error, error
of representation) — observations are not perfect

e Data coverage may not be complete (50omb
temperature over Cheyenne, WY, no sonde site) — need
first guess
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Data Assimilation Introit

Optimal analysis of the atmosphere obtained by
combining a model forecast (first guess / background
field) with observations.

The first guess field / background field is usually a
short-range forecast from the previous analysis cycle

e The first guess at 1200 UTC could be the 6-hour forecast
from the 0600 UTC model

First guess field provides all state variables (T, p, q,
etc.) at all grid point locations.

First guess needs to be moved closer to observed
values (it’s just a guess, after all).
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Data Assimilation Introit

Optimal analysis of the atmosphere obtained by
combining a model forecast (first guess / background
field) with observations.
Some issues with this:

e Observational data is irregular in space and time

e Model data is on a grid at regular times

e Perfect fit to data - might get spurious results in model

e Perfect fit to model — might be missing / under-
representing important features

Great to get the best of both the obs and first guess
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Data Assimilation Introit
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First Guess + Observations = Analysis
How does one optimally combine the first
guess field and the observations?
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Data Assimilation — One Value

Consider two estimates of the temperature in this
rooim.

e ' shall be what we set the thermostat to (a forecast)

e T, shall be the value from Mohan’s watch (an observation)

Use average squared errors (Variance) to weight the
two estimates

 Where 62 = Error Variance associated with T,

e Where ¢,? = Error Variance associated with
The optimal estimate (most likely value) of the
temperature in the room, (T,), is:

T,-T;= (o) (c2+6,2) T, - T
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Data Assimilation — One Value

The estimate of the temperature with minimum
error variance, the analysis value (T,), is:

T, - Tr= (62)(c2+00%)"[To - T}l
What if the thermostat is perfect?
Thenc,>=0
Then T,- ' =o0,s0T, =
What if Mohan's watch is perfect?
Then c,2=0
ThenT,-T,=T,-TpsoT,=T,

T , is a weighted average of the observation and first guess
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Data Assimilation — Full model

I 1 g o1 ||

Assuming that observation and forecast errors are

uncorrelated, the analysis increment (x¢ - x/) that
minimizes analysis error variance is (Cohn, 1997):

x? - ¥ = BHT'(HBH"+R)'|y-Hx/|
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Analysis equation
T,-T,=(op)(op+065?)" [T - T/]
x - ¥/ = BHT(HBH™+R)"[y-Hx/]
Model State Vector (x?, /)

— A vector with all model variables at all model
gridpoints

Observation Vector (y)
- A vector equal with all observations
Observation Operator (H)

— Converts data from observation space into model
space (spatial conversion, variable conversion)
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Analysis equation
1,-T;= (GFZ)(GF2+GOZ)_1[TO - T¢]
x? - ¥ = BHT(HBHT+R)'|y-Hx/|

Analysis Increment (x® - /)

— A vector equal to the difference between the
analysis and the first guess field.

Innovation Vector (y-Hx/)

— A vector equal to the difference between the
observations and the first guess field, in
observation space
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Analysis equation
I,-1;= (GFZ)(GFZ‘FGOZ)_I[TO - Tp]
x? - ¥ = BHT(HBH"+R)'|y-Hx/]

Observation error covariance matrix (R)

— A matrix describing how errors of one observed
parameter at one observing site correlate to errors
of all observations (including itself)

First guess/Background error covariance matrix (B)

— A matrix describing how errors of one parameter
at one gridpoint correlate to errors of all
parameters at all gridpoints (including itself)
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Analysis equation

x? - x/ = BHT(HBH"+R)"[y-H»/

Depending how you make B, this equation can be
used for ‘optimal interpolation’, or the ‘Kalman
Filter’.

Data Assimilation Analogy: driving with your eyes
closed: open eyes every analysis time and correct
trajectory
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Variational Schemes

T,-T,=(op)(cp+05*) " [Tp - T/]
Multiplying both sides by (c,>+6,?), gives:

(GFZ"‘O'OZ) [TA Ve ] = (GFZ)[TO % ]

Expand out left hand side:

[T, - Tfl (62)+[T, - T;] (602 = [T - T(] (642)

Combining:

[T, - T] (Goz) :[To - Tl (GFZ)‘[TA_ ] (GFZ):[TO - 1| (o)
Divide all by (c,26,?):

[T, - Tl (62)=[T - Tyl(0p3)?

Minimize a cost-function:

J(x?) = (/,)[(x*-x/)B*(x?-x/)|+(*/,) [ (y-Hx*)R(y-Hx?)]
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Variational Schemes

Minimize a cost-function:

J(x?) = (/,)[(x*-x/)B(x2-x/)|+('/,) [ (y-Hx*)R*(y-Hx?)]

As with Optimal Interpolation, and the Kalman Filter,
the challenge in data assimilation is how to estimate B
and R, as well as proper construction of H .

R usually a diagonal matrix, as all observation errors are

assumed to be uncorrelated. An exception is nadir-
sounding satellites, with vertical observation error

correlations




11111

e

spaa—

Variational Schemes

Minimize a cost-function:

J(x7) = (/,)[(x2-x/)B(x2-%/) |+(/,) [ (y-Hx*) R "(y-Hx?) |

As with Optimal Interpolation, and the Kalman Filter,
the challenge in data assimilation is how to estimate B
and R

B can take many forms. It can be created by:

Declaring a Gaussian shape (OI)
Using a recent climatology (3D-Var)
Using differences in forecasts valid at analysis time (EnKF)
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Barnes Analysis

The Barnes Scheme

applies a Gaussian o Girid Point :

. . . . . : o——8 . L
weighting function, in o Gfid Fointto . I i

. : valuate .
which the weight an - Statonlocation . & .4+ & 4

; 2 Radius of
observation contributes’ |nfluence

to the overall value of :
the grid point falls oft - L ]
rapidly with increasing
distance from the
point.

http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html
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Barnes Analysis

Since the tails of a

Gaussian function are , rid Point |
infinite, in practice a o G Fointto F s f g
radius of influence - Station Location $ = 1 3

is is chosen such that ' Jiuence : | .
stations outside the T e
circle about the .3 1 r .1
gridpoint are not : z
considered.

http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html



Barnes Analysis

For each gridpoint,

stations within the e L
: : o Grid Point ‘
radius of influence are g | ST W— T
assigned a weight ® Evaluate : 1
Value “W” using the « Station Location -. % 7 IS ®
. Radius of .
formula: Influence . . .

W, = e -
| :

where d is the distance : :
from the observation to
the gridpoint and R is

the radius of influence.

http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html
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Barnes Analysis

After the weights are
determined the o Grid Point :
analysis value at the o GidFontto e L]
valuate A
grldeIHt is « Station Location & 5 % 5 ®
: Radius of x
determined by: e . |
Ewixi o ) {1} 7

A= W . % .t

This is known as the

first pass of the
scheme

http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html
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Barnes Analysis

If more than 1 iteration

of the scheme is o Grid Point _ | '
desired (typically 2 » Grid Point to =1 1 I 7

i d Evaluate .
passes are preformed), . station Location ] 4- ¢ 1
a method known as » Radius of 1 .

: ; ; Influence . z .
successive correction is s ¢ 5
applied. :

: —p gy oty
Each correction step : :
can be represented as:

W (X-X,)
W,

http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html

X'g=Xg+



Barnes Analysis

A new parameter called
the convergence o Grid Point | E
parameter (GAMMA) _ Grd Point to A (T, U G
. Evaluate
is use to control the . Sition ) coation 1 1 |- ]
amount of smoothing. . Radius of 1.
Influence - 7 .
. 2 o L 1} =

W,=e“® W, =e"™ :

| o & O
where d is the distance : .
from the observation to
the gridpoint and R is

the radius of influence
http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html



e -
‘_‘_‘_____‘,,n-t-f'"'""'v e
e
e

Barnes Analysis

The convergence

parameter gamma + Grid Point _ . ! '
ranges between o and 1. _ Girid Point to 1 1 1 7
Evaluate
A value between .2 and - Station Location : 1 1 1
3 is generally assumed. | ~ ﬁ?ﬂ;ﬁcﬂ : o :
o 0 3 -
; ~&/RI ‘)2 :

L -{dm) x T I A ¢

W=e“" W =e . _

http://www.unidata.ucar.edu/software/gempak/tutorial/barnes.html



arnes Analysis in IDV

The resulting grid can be displayed using any of the
Gridded Data Displays.

There are 5 parameters for

HRRA-Large 06/08/2009 (22:00) 0 hr fcst
_ ~ 850mb Temperature (C

B ™ T Ty ey Ty a.l
N B
oy

you to set:

* Spacing i
e Grid Size
e Passes

e Search Radius
e Gain?

http://mailman.unidata.ucar.edu/software/idv/docs/userguide/controls/ObjectiveAnalysis.html
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Barnes Analysis in IDV

Spacing. You can set the grid spacing as follows:

e Automatic - grid spacing will be calculated from the
observation density

* Degrees - use a specific lat/lon

____.-.._‘.-'7‘-"‘ "'-"' g S

e

spacing P "N

e Points - set the number of grid
points in the x and y direction

Grid Size. Specify the grid
spacing if not using automatic
calculation.

http://mailman.unidata.ucar.edu/software/idv/docs/userguide/controls/ObjectiveAnalysis.html
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Barnes Analysis in IDV

Passes. Set the number of passes for the Barnes
analysis to do

* 4 passes recommended for analyzing fields where derivative
estimates are important (Ref: Barnes 1994b)

e 3 passes recommended for all other fields (with gain set to
1.0) (Ref: Barnes 1994¢ "Two pass Barnes Objective Analysis
schemes now in use probably should be replaced by
appropriately tuned 3pass or 4pass schemes”)

e 2 passes only recommended for
"quick look" type analyses.

e 1 pass is rather rough

e 5 is right out (Book of Armaments)

http://mailman.unidata.ucar.edu/software/idv/ docs/usergulde/ controls/ Ob)ectlveAnaly51s html



Barnes Analysis in IDV

Search Radius. Set the search radius (in grid units) for
the weighting of points in determining the value at a
specific grid point. Should be in the range 0.2 to 1.0.

e Data are fitted more closely with a gain of 0.2 (at the expense
of less overall accuracy over the entire grid); larger values
smooth more.

Gain. Set the factor by which scale Length is reduced for
the second pass. Should be in the range 0.2 to 1.0.

e Data are fitted more closely with a gain of 0.2
(at the expense of less overall accuracy over
the entire grid); larger values smooth more.

e Suggested default: 1.0 Set the gain for each
pass after the first.

http://mailman.unidata.ucar.edu/software/idv/docs/userguide/controls/ObjectiveAnalysis.html
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Now It Is your turn
* Launch IDV!

* [Load in

sonde data

* LLoad in
surface data

* Make some
analyses
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Data

e Choose Data
» Upper Air Observations
Connect

Most Recent
“Add Source”

Data

* Choose Data

» Surface Observations
Connect

Most Recent
“Add Source”




Default Settings:
® Spacing

File Edit Displays Data Tools Help
2800 afBs E9S &% ¥ @ @ < ams2008 = China < Don'sFavs < PACDEX

%, ouckinks | 46D btaChoosers e 2 degrees
Data Sources: [Helds Q, Displays o Passes
Formulas P Gridded Fields /@ Plan views -
b Cdatalivipointmetar.csy o7 * Contour Plan View ;
* DIR ; Color-Filled Contour Plan View ;% *2
* 5PD - v . .
e | Comemosarmvon Wl o coorch Radius
( Grid Parameters || Seflings | ¢ 10
: | Use Defautt | § o Gain
Spacing: | Automatic ¥
. ° 1
Grid Size: 0 . Y
Passes: |2 | o Fleld
g oo =  Pressure
Gain: 1 | o=
* Level
Create Display | e Surface

|| Memory: 73,79/1041 MB |
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Explore these areas

See what |
the defaul

See what |

happens if you change the grid-spacing from
t 2-degrees to 0.5-degrees or 10-degrees

happens if you change the number of passes

from 2 to10r 10

See what happens if you change the search radius
from 10 to 1

See w]
See w]

nat
nat

See w]

nat

happens if you change the gain from 1to 0.1
happens if you look at different fields (T, T)

happens if you look at surface (METAR) data

as opposed to 5oomb data

Upload your favorite analyses to share with us



e
e
““““““

Barnes Analysis in IDV

References Barnes, S.L., 1994a: Applications of the Barnes
objective analysis scheme Part I: Effects of undersampling,
wave position, and station randomness. J. Atmos. Oceanic
Technol. 11, 1433-1448.

Barnes, S.L., 1994b: Applications of the Barnes objective
analysis scheme Part II: Improving derivative estimates. J.
Atmos. Oceanic Technol. 11, 1449-1458.

Barnes, S.L., 1994c: Applications of the Barnes objective
analysis scheme Part III: Tuning for minimum error. J.
Atmos. Oceanic Technol. 11, 1459-1479.

http://www.asp.ucar.edu/colloquium/1992/notes/parti/no
de12o.html
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