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W h at  D r i v e s  P r o g r e s s  i n  G E O S c i e n c e ?

New Simulations

New Observations
New Ideas

snowfall over bare ground and at times when the canopy is completely covered with snow). Note that in
equation (14) the solid precipitation flux occurs only at the top of the snowpack (z 5 2hsfc).

An additional equation is needed to describe the compaction of the snowpack. This is described in discre-
tized form in section 4.1.4

2.2.3. Soil Hydrology
The conservation equation for soil hydrology is
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In contrast to equations (12) and (13) where qice< qliq, in equation (15) we assume that qice 5 qliq, meaning
that there is no volume expansion during freezing [Dal’Amico et al., 2011], and hence Hsoil

m 5hsoil
liq 1hsoil

ice .

On the RHS of equation (15), the terms qsoil
liq;x , qsoil

liq;y , and qsoil
liq;z (m s21) define the liquid fluxes in the x, y, and z

directions, and the terms Esoil
evap and Esoil

trans (kg m23 s21) define the losses due to soil evaporation and transpi-
ration, respectively.

To accommodate both unsaturated and saturated flow through soils, the fluxes on the RHS of equation (15)
must be formulated as a function of liquid water matric potential, w (m). This requires additional functions
to relate the fluxes to the liquid water matric potential and to relate total water matric potential to total
water content.

For example, the vertical fluxes of liquid water can be parameterized as a Darcy flux, with infiltration into
the soil as the upper boundary condition
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where the depth z 5 0 defines the position of the soil surface. In equation (16) qrain, qix, and qsx (m s21)
define rainfall, infiltration-excess runoff and saturation-excess runoff, respectively. Within the soil profile, the
two terms of the Darcy flux are the capillary and gravity fluxes, w (m) is the liquid water matric potential,
and K soil5f ðwÞ (m s21) is the unsaturated hydraulic conductivity of soil, which varies with the liquid water
matric potential.

Water retention can be given as

Hsoil
m ðw0Þ5S#ðw0Þ (17)

where S*($) is the water retention curve, e.g., the Van Genuchten [1980] function, and w0 (m) is the total
water matric potential (note that for unfrozen conditions Hsoil

m 5hsoil
liq and w0 5 w).

Liquid water flow in partially frozen soils is driven by strong capillary pressure gradients that develop as ice
forms in the larger pore spaces. In this work, we follow the approach adopted by Zhao et al. [1997], in which
(i) the generalized Clapeyron equation is combined with the water retention curve to separate the total
water content Hm into the volumetric fractions of liquid water hliq and ice hice (see section 2.3.1 and Clark
et al. [2015a]); and (ii) ice is treated as part of the solid matrix in order to calculate the liquid water matric
potential w. Including ice as part of the solid matrix prevents freezing-induced suction under saturated con-
ditions [see also Noh et al., 2011; Painter and Karra, 2014].

Assuming that ice forms part of the solid matrix, the effective saturation of soils, Se (-) is given as

Seðw0; TÞ5 hliq2hres

hsat2hice2hres
(18)

where hliq and hice can be computed from w0 and T [Clark et al., 2015a], and hsat and hres (-) define the poros-
ity and residual volumetric liquid water content. Based on the ‘‘freezing equals drying’’ hypothesis (i.e., the
same constitutive functions can be used to relate hliq to w under freezing and drying conditions [Spaans
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• Familiar software ecosystem 

• Data-proximate deployments 

• Scalability 

• Emphasis on next-generation data storage formats for the 
geosciences 

• Demonstration
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R e d u c i n g  T i m e  t o  S c i e n c e  w i t h  P A N G E o   
( a n  o u t l i n e )
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T h e  b i g  d ata  g e o s c i e n c e  e r a  i s  
n o w

• The geosciences are facing a data 
volume crisis
• From Earth System Models:

• Higher resolution
• More process representation
• Larger ensembles
• On track for exabytes by CMIP7
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• From Remote Sensing Platforms:
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1. Software 

• Few tangible incentives to share source code (funding agencies, journals)


• Lack of extensible development patterns; often it is easier to “home grow” your own solution, rather 
than using someone else’s.


• Result is that most geoscientific research is effectively unreproducible and prone to failure.


2. Data sprawl 

• Inefficiencies of many copies of the same datasets (“dark replicas”)


• Lessons learned from the CMIP archives (CMIP3 was duplicated > 30x)


3. Local vs. High-performance vs. Cloud Computing 

• Traditional scientific computing workflows are difficult to port from a laptop, to HPC, to the cloud
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F r a g m e n tat i o n  p r o b l e m s



S c i e n t i f i c  P y t h o n  f o r  D ata  S c i e n c e
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source: stackoverflow.com

http://stackoverflow.com


aospy

S c i e n t i f i c  P y t h o n  f o r  D ata  S c i e n c e

!7

SciPy

Credit: Stephan Hoyer, Jake Vanderplas (SciPy 2015)



X a r r ay  D ata s e t :  M u lt i d i m e n s i o n a l  V a r i a b l e s  
w i t h  c o o r d i n at e s  a n d  m e ta d ata
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time

longitude

latitude

elevation

Data variables 
used for computation

Coordinates 
describe data

Indexes 
align data

Attributes 
metadata ignored 

by operations

+

land_cover

“netCDF meets pandas.DataFrame” Credit: Stephan Hoyer



x a r r ay  m a k e s  s c i e n c e  e a s y
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import xarray as xr 
ds = xr.open_dataset('NOAA_NCDC_ERSST_v3b_SST.nc') 
ds

<xarray.Dataset>
Dimensions:  (lat: 89, lon: 180, time: 684)
Coordinates:
  * lat      (lat) float32 -88.0 -86.0 -84.0 -82.0 -80.0 -78.0 -76.0 -74.0 ...
  * lon      (lon) float32 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 ...
  * time     (time) datetime64[ns] 1960-01-15 1960-02-15 1960-03-15 ...
Data variables:
    sst      (time, lat, lon) float64 nan nan nan nan nan nan nan nan nan ...
Attributes:
    Conventions:  IRIDL
    source:       https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/...

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/...


x a r r ay :  l a b e l - b a s e d  s e l e c t i o n
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# select and plot data from my birthday 
ds.sst.sel(time='1982-08-07', method='nearest').plot()



x a r r ay :  l a b e l - b a s e d  o p e r at i o n s
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# zonal and time mean temperature 
ds.sst.mean(dim=(‘time', 'lon')).plot()



x a r r ay :  g r o u p i n g  a n d  
a g g r e g at i o n  
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sst_clim = sst.groupby('time.month').mean(dim='time') 
sst_anom = sst.groupby('time.month') - sst_clim 
nino34_index = (sst_anom.sel(lat=slice(-5, 5), lon=slice(190, 240)) 
                       .mean(dim=('lon', 'lat')) 
                      .rolling(time=3).mean(dim='time')) 
nino34_index.plot()



• label-based indexing and arithmetic 

• interoperability with the core scientific Python packages (e.g., 
pandas, NumPy, Matplotlib) 

• out-of-core computation on datasets that don’t fit into memory 
(thanks dask!) 

• wide range of input/output (I/O) options: netCDF, HDF, geoTIFF, zarr 

• advanced multi-dimensional data manipulation tools such as group-
by and resampling
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x a r r ay
https://github.com/pydata/xarray

https://github.com/pydata/xarray


d a s k
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Complex computations represented as a graph of 
individual tasks. 

 
Scheduler optimizes execution of graph.

https://github.com/dask/dask/

ND-Arrays are split into chunks that 
comfortably fit in memory

https://github.com/dask/dask/
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E x a m p l e  C a l c u l at i o n :  Ta k e  t h e  
M e a n !

multidimensional 
array 

read chunk 
from disk reduce

store

read chunk 
from disk reduce

store

read chunk 
from disk reduce

store

serial execution (a loop) 

reduce
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E x a m p l e  C a l c u l at i o n :  Ta k e  t h e  
M e a n !

multidimensional 
array 

read chunk 
from disk reduce read chunk 

from disk reduce read chunk 
from disk reduce

store

store

store

reduce

parallel execution (dask graph) 



• Foster collaboration around the open source scientific python 
ecosystem for ocean / atmosphere / land / climate science. 

• Support the development with domain-specific geoscience 
packages. 

• Improve scalability of these tools to to handle petabyte-scale 
datasets on HPC and cloud platforms.
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P a n g e o  P r o j e c t  g o a l s



E a r t h c u b e  A w a r d  T e a m
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Ryan Abernathey, Chiara Lepore, Michael Tippet, Naomi Henderson, Richard Seager 
 
 
 
Kevin Paul, Joe Hamman, Ryan May, Davide Del Vento 
 
 
 
Matthew Rocklin



O t h e r  C o n t r i b u t o r s
!19

Jacob Tomlinson, Niall Roberts, Alberto Arribas 
Developing and operating Pangeo environment to support analysis of UK Met 
office products

Rich Signell 
Deploying Pangeo on AWS to support analysis of coastal ocean modeling

Justin Simcock 
Operating Pangeo in the cloud to support Climate Impact Lab research and analysis

Supporting Pangeo via SWOT mission and recently 
funded ACCESS award to UW / NCAR 🎉

Yuvi Panda, Chris Holdgraf 
Spending lots of time helping us make things work on 
the cloud
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P a n g e o  A r c h i t e c t u r e

Jupyter for interactive 
access remote systems

Cloud / HPC

Xarray provides data structures 
and intuitive interface for 
interacting with datasetsParallel computing system allows 

users deploy clusters of compute 
nodes for data processing. 

Dask tells the nodes what to do.

Di
st

rib
ut

ed
 s

to
ra

ge
“Analysis Ready Data”  

stored on globally-available 
distributed storage.
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B u i l d  y o u r  o w n  p a n g e o
Storage Formats Cloud Optimized


COG/Zarr/Parquet/etc.

ND-Arrays More coming…

Data Models

Processing Mode          Interactive Batch Serverless

Compute Platform HPC                             Cloud Local
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P a n g e o  D e p l o y m e n t s
NASA Pleiades p a n g e o . p y d ata . o r g

NCAR Cheyenne

Over 500 unique 
users since March!

h t t p : // pa n g e o - data . o r g / d e p l oy m e n t s . h t m l

(Scale using job queue system) (Scale using Kubernetes)

http://pangeo.pydata.org
http://pangeo-data.org/deployments.html


S h a r i n g  D ata  i n  t h e  C l o u d  
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Traditional Approach: A Data Access Portal

Data Access 
Server

file.0001.nc

file.0002.nc

file.0003.nc

file.0004.nc

Data Granules (netCDF files)

Client

Client

Client

Data Center Internet



• Too big to move: assume data is to be used but not copied 

• Self-describing: data and metadata packaged together  

• On-demand: data can be read/used in its current form from anywhere  

• Analysis-ready: no pre-processing required
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O n - D e m a n d  A n a ly s i s - R e a d y  D ata



S h a r i n g  D ata  i n  t h e  C l o u d  
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Direct Access to Cloud Object Storage

Catalog

chunk.0.0.0

chunk.0.0.1

chunk.0.0.2

chunk.0.0.3

Data Granules 
(netCDF files or something new) 

Cloud Object Storage

Client

Client

Client

Cloud Data Center

Cloud Compute 
Instances
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D a s k  s c a l e s  c o m p u t e …  
C a n  t h e  s t o r a g e  l ay e r  k e e p  u p ?

By Matt Rocklin (Anaconda) 
http://matthewrocklin.com/blog/work/2018/02/06/hdf-in-the-cloud

Cloud Optimized 
GeoTIFF HDF + FUSE HDF + Custom 

Reader
Build a Distributed 

Service
New Storage 

Format (e.g. zarr)

pros fast, well-established
works with existing files, 
no changes to HDF lib 

needed

works with existing 
files, no complex 

FUSE tricks

offloads the problem 
to others, maintains 

stable API
fast, intuitive, 

modern

Cons data model not 
sophisticated enough

complex, low 
performance, brittle

Requires plugins to 
HDF library and 

tweaks to 
downstream libs

Complex, 
introduces 

intermediary, 
probably not free

not a community 
standard

http://matthewrocklin.com/blog/work/2018/02/06/hdf-in-the-cloud


H o w  t o  s h a r e  a  d ata s e t  i n  t h e  
c l o u d
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https://medium.com/pangeo/step-by-step-guide-to-building-a-big-data-portal-e262af1c2977 

•Place your Big Data in cloud object storage in a self-describing, cloud-optimized format. 

•Share a public path to your datasets (url/doi/ect)

(example of a “intake” catalog)

https://medium.com/pangeo/step-by-step-guide-to-building-a-big-data-portal-e262af1c2977


• Access and existing Pangeo deployment on an HPC cluster, or 
cloud resources (eg. pangeo.pydata.org) 

• Adapt Pangeo elements to meet your projects needs (data portals, 
etc.) and give feedback via github: github.com/pangeo-data/pangeo 

• Participate in open-source software development!
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H o w  t o  g e t  i n v o lv e d
http://pangeo-data.org

http://pangeo.pydata.org
http://github.com/pangeo-data/pangeo
http://pangeo-data.org


H a n d s  o n  t i m e
!29

• Go to pangeo.pydata.org 
(requires GitHub credentials) 

• Walk through xarray-data.ipynb 

• Run a few of the examples 

• Try some science of your own 

(disclaimers about saving data, long term 
access, security, etc.)

http://pangeo.pydata.org


M o r e  o n  C l o u d  N at i v e  
G e o s c i e n c e  

!30

• Cloud Native Geospatial Part 2: The Cloud Optimized GeoTIFF 
• Towards On-Demand Analysis Ready Data 
• https://medium.com/planet-stories 


• Step-by-Step Guide to Building a Big Data Portal 
• https://medium.com/pangeo

https://medium.com/pangeo

