

Cloud-based WRF Downscaling

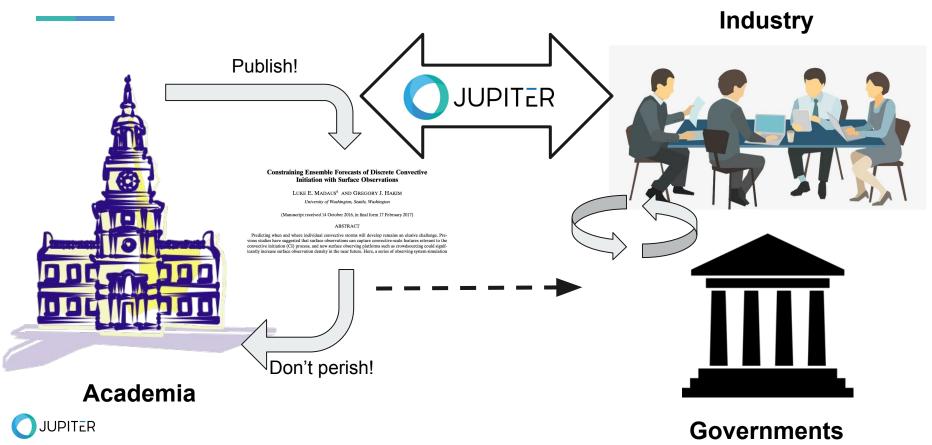
Simulations at Scale using Community Reanalysis and Climate Datasets

Luke Madaus -- 26 June 2018 luke.madaus@jupiterintel.com

2018 Unidata Users Workshop

Outline

- What is Jupiter?
- Challenges to running WRF at scale
- Jupiter's approach to this problem
 - Leveraging community datasets
 - Containerization
 - Distributed data-proximate analysis
- (Brief) demonstration
- Example use cases
- Looking ahead to broader access
- Questions for the group


JUPITER = jupyter

Translating the Latest Climate Science to the Needs of Diverse Users

Cloud-Native Platform

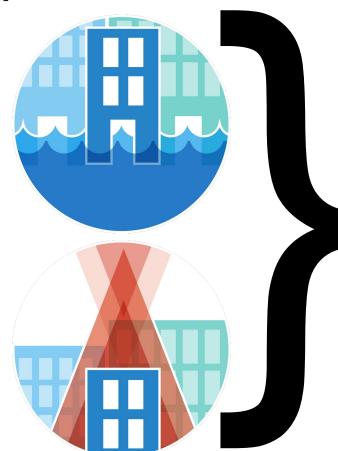
Data + Models + Analysis

JUPITER

End-Users Interested in Climate Risk

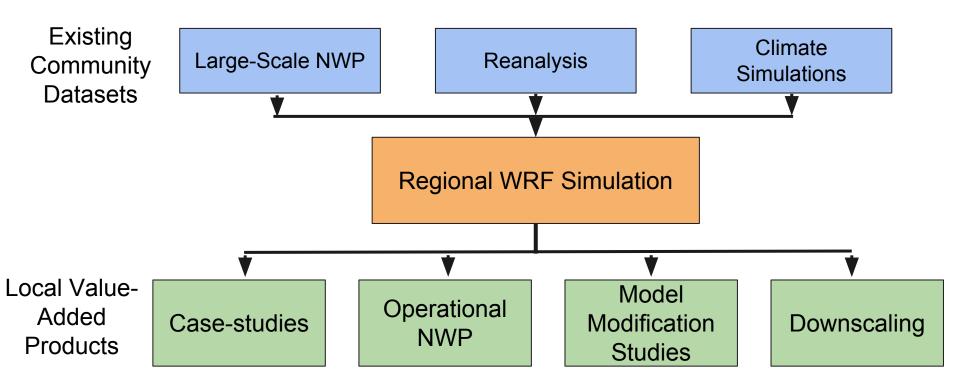
Government + Corporate + Public Earth System Researchers

Academic + Non-Profit + Industry



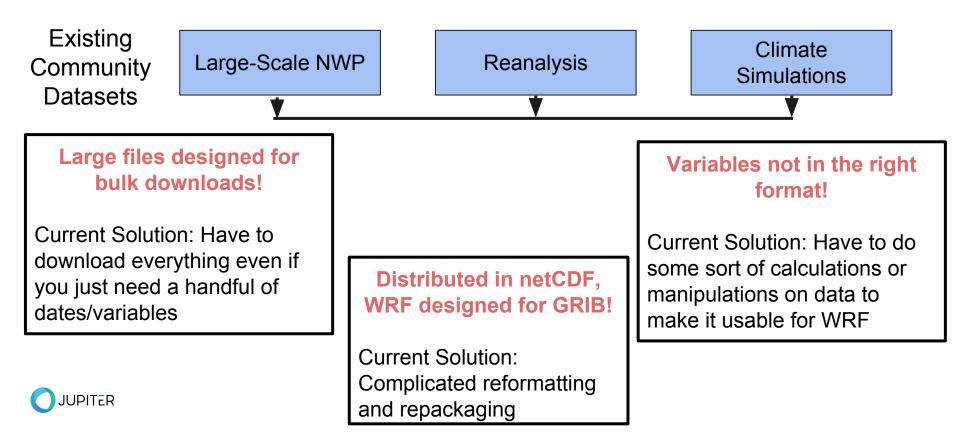
FloodScore

(Operations and Planning)



How are hyper-local-scale risks for flood and extreme heat hazards changing on daily to decadal timescales?

(Downscaling)


Regional WRF Simulations on the cloud -- Challenges

Regional WRF Simulation

Challenges

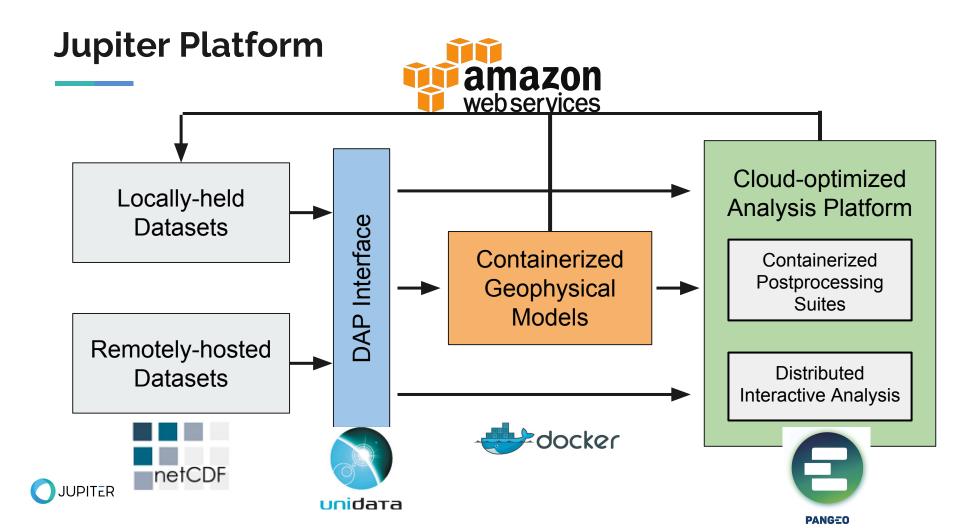
How do I make WRF work on my system?

Current Solution: While WRF and supporting libraries have gotten easier to compile and install, still a challenge I want to simply swap out another version of my code?

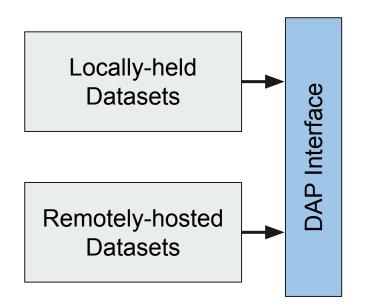
Current Solution: Changing dynamic links, keep track of pointers, making sure things aren't overwritten...

Regional WRF Simulation

I need to move my work to a new cluster. How?

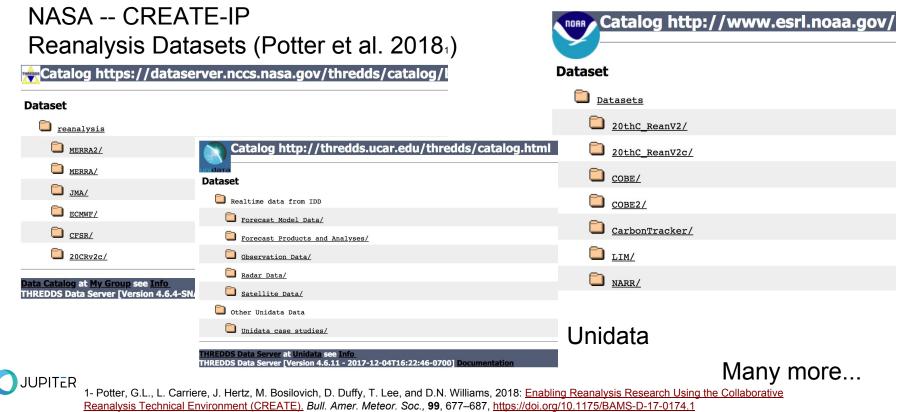

Current Solution: Reinstalling libraries, recompiling, running baseline checks again...

How do I share all the data I'm generating?


Current Solution: Downloading to local machine, setting up own file server...

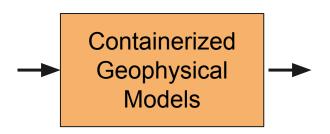
Regional WRF Simulations on the cloud -- Jupiter's Approach

Jupiter Platform

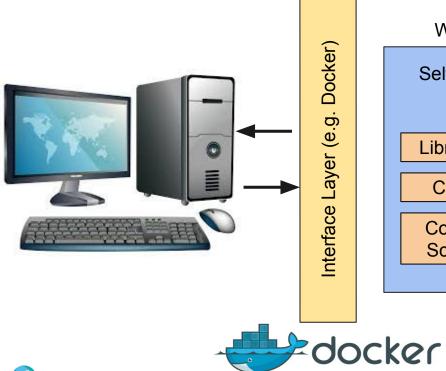

The Data

- netCDF format as current standard
- Increasing number of weather and climate datasets hosted through streamable platforms (e.g., THREDDS)
- On-the-fly subsetting, minimize download size
- Jupiter exploring more cloud-optimized data formats and hosting methods (e.g. Zarr...more on this at the end)

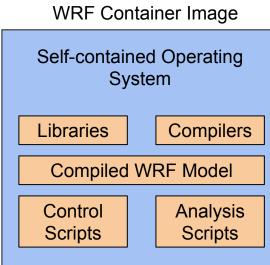
DAP-Fronted Community Datasets


NOAA-ESRL

Jupiter Platform


The Models

- NSF BigWeatherWeb: Containerization allows confident deployment of models at scale (Hacker et al. 2017₁)
- Preprocessing automated -- direct from netCDF to WRF
- Batch and on-demand simulation for research and real-time forecasts
- Pushing computational limits of current cloud
 compute architectures
 JUPITER



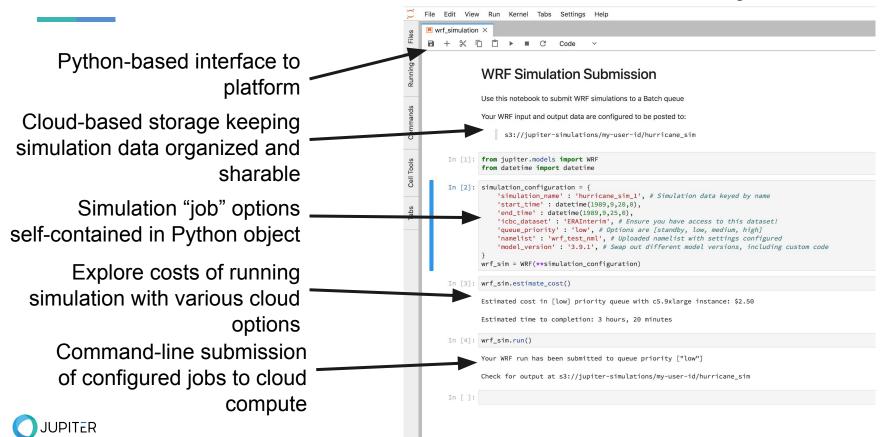
What is containerization?

UPITER

A portable, self-contained, only what is needed package that can perform some function on *any machine* running an *interface layer*.

What is containerization?

Pre-built container images can be "pulled" from online repositories


IC REPOSITORY	
wxwrf/ncar-wrf 🏠	
oushed: 10 months ago	
o Info Tags	
Short Description	Docker Pull Command
NCAR built WRF image for multi core, single node computation.	docker pull bigwxwrf/ncar-w
Full Description	Owner
Full description is empty for this repo.	

Or, a single text file that contains a "recipe" for building the container can be downloaded for local builds

<pre>FROM fedora:latest LABEL maintainer="Luke Madaus <luke.madaus@jupiterintel.com>" #</luke.madaus@jupiterintel.com></pre>
This Dockerfile compiles WRF from source during "docker build" step
#ENV WRF_VERSION 3.7.1
ENV WRF_VERSION=4.0 \
CONDA_VERSION=latest
RUN yum -y update && yum -y install file gcc gcc-gfortran gcc-c++ glibc.i686 libgcc.i686 libpng-devel \
jasper jasper-devel hostname m4 make perl tcsh time wget which zlib-devel \
openssh-clients openssh-server net-tools openssl openssl-devel hdf5 hdf5-devel \
mpich mpich-devel netcdf-mpich-devel netcdf-fortran-mpich-devel geos-devel \
redhat-rpm-config bzip2 You, 7 months ago + run-wrf.py now checks for time deltas in metgrid and WPS-format
Install python3 libraries for reading netcdf and grib files
ANN pips install numpy NETCDF4 pyproj boto3
#RUN pips install https://github.com/matplotlib/basemap/archive/v1.0.7rel.tar.gz
#RUN pip3 install pygrib
Switch to using conda
RUN wget http://repo.continuum.io/miniconda/Miniconda3-\${CONDA_VERSION}-Linux-x86_64.sh -0 ~/miniconda.sh && \
bash ~/miniconda.sh -b -p /miniconda && \
export PATH="/miniconda/bin:\$PATH"
ENV PATH=/miniconda/bin:\$PATH
Use conda to install the required libraries
RUN conda install -y -c conda-forge numpy netCDF4=1.3.1 pyproj xarray dask esmf xesmf wrf-python requests \
&& pip install Pydap
Get the license from NCAR
RUN curl -SL https://ral.ucar.edu/sites/default/files/public/projects/ncar-docker-wrf/ucar-bsd-3-clause-license.pdf
#
Set some environment variables to the bashrc file for runtime
RUN echo export CC=gcc >> /etc/bashrc \
&& echo export FC=gfortran >> /etc/bashrc \
&& echo export CXX=g++ >> /etc/bashrc \
SS echo export FCFLAGSm64 >> /etc/hashrc \

Scalable WRF Simulations in <10 lines of Python

Demonstration

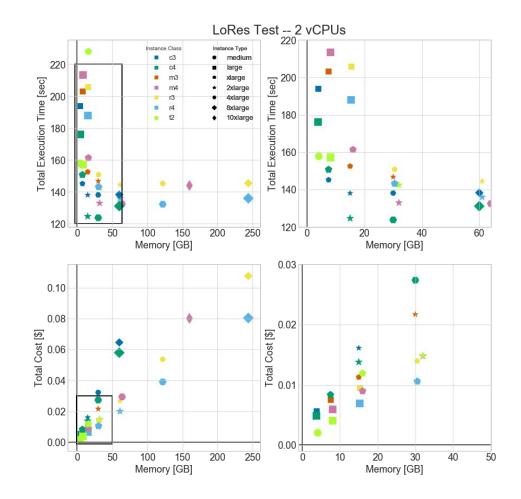
Jupiter Platform

The Analysis

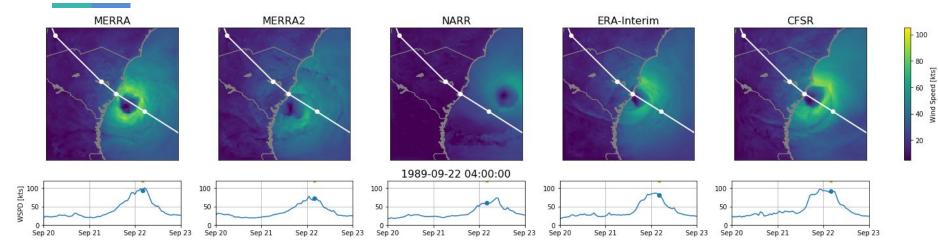
- Containerization allows standardized post-processing or analysis chains to be deployed
- Distributed analysis of large datasets through interactive tools (Pangeo stack)
- Allow end-users to dynamically query data for questions of interest

Containerized Postprocessing Suites

Distributed Interactive Analysis

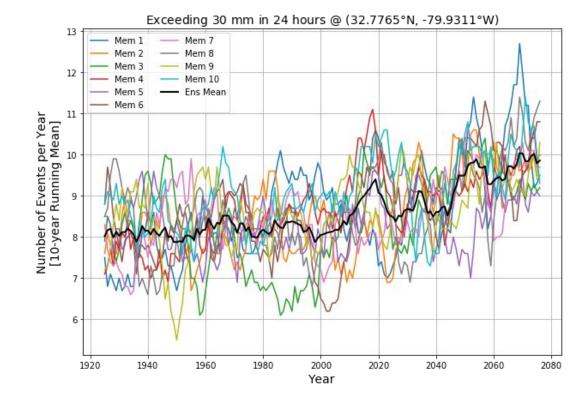

PANGEO

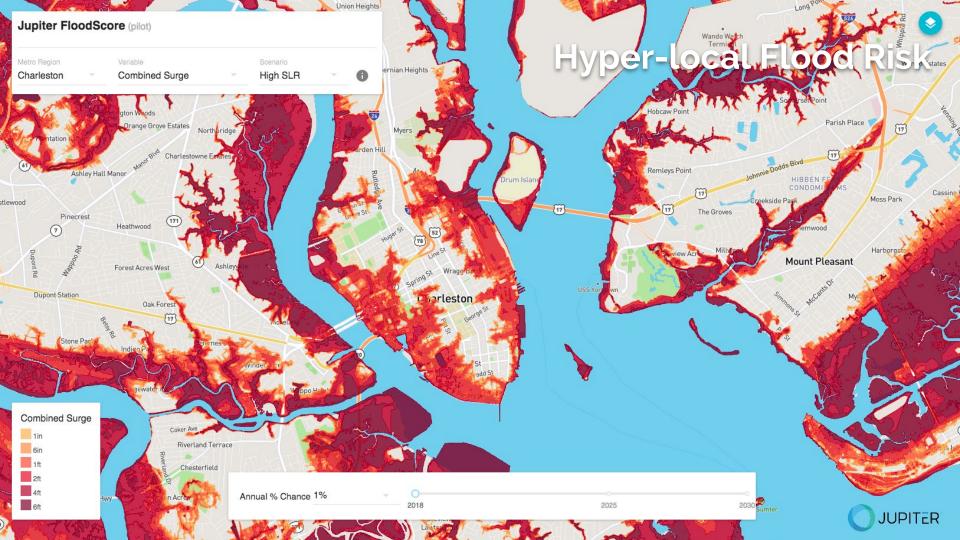
Example Use Cases


Example Uses

Extensive WRF benchmarking tests across a variety of cloud resource configurations

Example Uses


Hurricane Hugo (1989) from the perspective of multiple reanalyses


- None of this reanalysis data held locally
- Total pre-processing time: 1 minute per simulation (in parallel)
- WRF execution: 5 day simulation, nesting down to 3 km, 1hr 30min (in parallel)
- JUPITER Conception to execution -> about 10 lines of Python on Jupiter platform

Example Uses

- Dynamical downscaling simulations to project extreme precipitation in Charleston, SC using 10 member of the CESM-LENS
- Thousands of simulations of extreme precipitation events; completed in one weekend

JPITER

Looking Ahead to Broader Access

BigWeatherWeb

NSF Award #1450488

Overview at:

BAMS Article: A Containerized Mesoscale Model and Analysis Toolkit to Accelerate Classroom Learning, Collaborative Research, and Uncertainty Quantification

http://bigweatherweb.org/Big Weather Web/Home/Home.html

A Common and Sustainable Big Data Infrastructure in Support of Weather Prediction Research and Education in Universities

Containerized WRF available! <u>https://github.com/NCAR/container-wrf</u> <u>https://hub.docker.com/r/bigwxwrf/ncar-wrf/</u>

Coming soon: Code for generating WRF initial conditions from arbitrary netCDF files

Working on the Jupiter Platform

• Jupiter Containerized WRF targeted for Autumn 2018 release (GitHub)

- Jupiter platform access on a project-by-project basis
 - Let me know if you think you have a good use case!

Questions for this group

- 1. Cloud-optimized netCDF
 - a. An ever-growing need -- case for it is only strengthening
 - b. Is this the way to go?
 - c. How easy would it be?
- 2. Containerized WRF simulations
 - a. Could you envision using this given your current compute platforms/resources?
 - b. What features would you find useful in a standalone, containerized WRF?
- 3. Cloud-hosted datasets and data-proximate workflows
 - a. What would it take to motivate you to move some (or all) of your work to the cloud?

