
Contents

1 Introduction 3
1.1 System Availability . 3
1.2 Package Structure . 4
1.3 Authorship, Copyright, History and Support 7

2 Overview 9
2.1 A Very Simple Application Example . 10
2.2 A Simple Application Example . 12
2.3 Flexible Design by Reduction to Elements 16
2.4 The Value of Integrated Metadata . 17
2.5 Toolkit for Designing Interaction Techniques 18

3 Data Model 20
3.1 MathTypes . 20

3.1.1 RealType Constructors . 22
3.1.2 TextType Constructor . 23
3.1.3 TupleType Constructor . 23
3.1.4 RealTupleType Constructors . 23
3.1.5 FunctionType Constructor . 24
3.1.6 SetType Constructor . 24
3.1.7 MathType Methods . 24
3.1.8 ScalarType Methods . 25
3.1.9 RealType Methods . 25
3.1.10 TupleType Methods . 26
3.1.11 RealTupleType Methods . 26
3.1.12 FunctionType Methods . 27
3.1.13 SetType Methods . 27
3.1.14 Application Example: Synthesizing MathTypes 27
3.1.15 Application Example: Analyzing MathTypes 28

3.2 Data Class Hierarchy . 29
3.2.1 Real Constructors . 30
3.2.2 Text Constructor . 30
3.2.3 Tuple Constructors . 31

1

3.2.4 RealTuple Constructors . 31
3.2.5 Field Constructors . 31
3.2.6 Data Methods . 32
3.2.7 Real Methods . 34
3.2.8 Text Methods . 35
3.2.9 Tuple Methods . 35
3.2.10 RealTuple Methods . 35
3.2.11 Function Methods . 36
3.2.12 Field Methods . 37
3.2.13 Application Example: Synthesizing Fields 39

3.3 Units . 40
3.3.1 Unit Methods . 41
3.3.2 SI Variables . 41
3.3.3 BaseUnit Methods . 41
3.3.4 CommonUnit Variables . 42

3.4 CoordinateSystems . 42
3.4.1 CoordinateSystem Constructors 43
3.4.2 CoordinateSystem Methods . 44

3.5 Sets . 45
3.5.1 Defining Interpolation Algorithms by Extending the Set Class . . 46
3.5.2 The Delaunay Class for Irregular Sets 47
3.5.3 Set Constructors . 48
3.5.4 Set Methods . 57
3.5.5 SimpleSet Methods . 58
3.5.6 Delaunay Constructors . 58

3.6 ErrorEstimates . 58
3.6.1 ErrorEstimate Constructors . 59

3.7 AuditTrails . 59
3.8 Missing Data . 59
3.9 FlatFields - Data Operations and Efficiency 60

3.9.1 FlatField Constructors . 61
3.9.2 FlatField Methods . 62

3.10 Immutable Data . 63
3.11 DataReferences . 63

3.11.1 DataReference Constructors . 63
3.11.2 DataReference Methods . 64

3.12 Application Example: Arrays versus VisAD Functions 64
3.12.1 Subtracting Images as Pixel Arrays in C 65
3.12.2 Subtracting Images as Pixel Arrays in VisAD 66
3.12.3 Subtracting Images as Functions in VisAD 67

2

1 Introduction

This is the VisAD Java Component Library Developers Guide, describing the design
and use of the VisAD Java component library for interactive analysis and visualization
of numerical data. It also describes the design rationale, based on lessons learned from
early mainframe visualization [5], interactive visualization [6], interactive computa-
tional steering [8], high-speed networks [7, 10], virtual reality [10], and supporting a
broad user community [1, 9]. Key design decisions include:

• The use of pure Java for platform independence and to support data sharing
and real-time collaboration among geographically distributed users. Support for
distributed computing is integrated at the lowest levels of the system.

• A general mathematical data model that can be adapted to virtually any numeri-
cal data, that supports data sharing among different users, different data sources
and different scientific disciplines, and that provides transparent access to data
independent of storage format and location (i.e., memory, disk or remote).

• A general display model that supports interactive 3-D, data fusion, multiple data
views, direct manipulation, collaboration, and virtual reality.

• Data analysis and computation integrated with visualization to support compu-
tational steering and other complex interaction modes.

• Support for two distinct communities: developers who create domain- specific
systems based on VisAD, and users of those domain-specific systems. VisAD
is designed to support a wide variety of user interfaces, ranging from simple
data browser applets to complex applications that allow groups of scientists to
collaboratively develop data analysis algorithms.

• Developer extensibility in as many ways as possible.

1.1 System Availability
The VisAD Java class library, including complete source code and installation instruc-
tions, is freely available from:
http://www.ssec.wisc.edu/ billh/visad.html

3

VisAD requires Java 1.2. VisAD displays are generated using either Java2D (in-
cluded in Java 1.2) or Java3D. More information about these is available at:
http://java.sun.com/

1.2 Package Structure
The VisAD system consists of the following packages:

visad - the core VisAD package

visad.cluster - large data distributed on clusters

visad.collab - collaborative displays

visad.java3d - Java3D displays for VisAD

visad.java2d - Java2D displays for VisAD

visad.python - Python support for VisAD

visad.browser - JDK 1.1 browser interface to VisAD

visad.ss - the VisAD Spread Sheet

visad.formula - formula parser

visad.matrix - matrix operations via JAMA

visad.math - FFT and histogram operations

visad.util - VisAD user interface utilities

visad.data - VisAD data format adapters

visad.data.in - support for read-only VisAD adapters

visad.data.units - units database and parsing

visad.data.dods - VisAD - DODS server adapter

visad.data.fits - VisAD - FITS file adapter

visad.data.netcdf - VisAD - netCDF file adapter

visad.data.netcdf.units - units parser for netCDF adapter

visad.data.netcdf.in - data input for netCDF adapter

4

visad.data.netcdf.out - data output for netCDF adapter

visad.data.hdfeos - VisAD - HDF-EOS file adapter

visad.data.hdfeos.hdfeosc - native interface to HDF-EOS

visad.data.gif - VisAD - GIF / JPEG file adapter

visad.data.ij - VisAD adapter for image files via ImageJ

visad.data.jai - VisAD adapter for image files via JAI

visad.data.qt - VisAD - QuickTime file adapter

visad.data.tiff - VisAD - TIFF file adapter

visad.data.text - VisAD - ASCII file adapter

visad.data.vis5d - VisAD - Vis5D file adapter

visad.data.mcidas - VisAD - McIDAS file adapter

visad.data.biorad - VisAD - Biorad file adapter

visad.data.amanda - VisAD - F2000 file adapter & viewer

visad.data.hdf5 - VisAD – HDF-5 file adapter

visad.data.hdf5.hdf5objects - helper for HDF-5 adapter

visad.data.visad - VisAD (serial object) file adapter

visad.data.visad.object - VisAD (serial object) file adapter

The following packages are distributed with VisAD:
HTTPClient - complete http client library

nom.tam.fits - Java FITS file binding

nom.tam.util - Java FITS file binding

nom.tam.test - Java FITS file binding

ucar.netcdf - Java netCDF file binding

ucar.multiarray - Java netCDF file binding

ucar.util- logging functions for servers

5

ucar.tests - test Java netCDF file binding

dods.dap - DODS server core classes

dods.dap.parser - JavaCC generated DODS paersers

dods.dap.server - DODS servers

dods.util - utility classes for DODS

gnu.regexp - GNU regular expressions

edu.wisc.ssec.mcidas - Java McIDAS file binding

edu.wisc.ssec.mcidas.adde - Java McIDAS file binding

ij - ImageJ system package

ij.gui - ImageJ system package

ij.io- ImageJ system package

ij.measure - ImageJ system package

ij.plugin- ImageJ system package

ij.plugin.filter - ImageJ system package

ij.plugin.frame - ImageJ system package

ij.process - ImageJ system package

ij.text - ImageJ system package

ij.util - ImageJ system package

ncsa.hdf.hdf5lib - Java HDF-5 file binding

ncsa.hdf.hdf5lib.exceptions – Java HDF-5 file binding

visad.paoloa - GOES satellite analysis

visad.paoloa.spline - spline fitting

visad.aune - shallow fluid model

visad.benjamin - Milky Way galaxy model

visad.rabin - rainfall estimation spread sheet

6

visad.jmet - JMET – Java meteorology

visad.meteorology - classes useful for meteorology

visad.bom - classes for ABOM

visad.aeri - classes for AERI data

visad.georef - classes for georeferencing

visad.install - cluster installer for VisAD-in-a-box

The VisAD source distribution also includes a directory visad/examples that con-
tains classes with the default package (i.e., no package statement).
VisAD is constantly being updated to fix bugs and add features and we don’t even

try to track all of these changes with VisAD version numbers. Rather, a file named
’DATE’ is included in distribution jar files that gives the date and time the distribution
file was created. We will change VisAD version numbers as new features accumulate.

1.3 Authorship, Copyright, History and Support
VisAD was written by programmers at the University of Wisconsin Space Science and
Engineering Center (SSEC), at the Unidata Program Office and at the National Center
for Supercomputer Applications (NCSA). They are:

Bill Hibbard - SSEC (contact author: hibbard@facstaff.wisc.edu)

Steve Emmerson - Unidata

Curtis Rueden - SSEC

Tom Rink - SSEC

Dave Glowacki - SSEC

Tom Whittaker - SSEC

Tommy Jasmin - SSEC

Don Murray - Unidata

Jeff McWhirter - Unidata

Nick Rasmussen - SSEC

Peter Cao - NCSA

7

James Kelly - ABOM

Andrew Donaldson - ABOM

Doug Lindholm - NCAR

Sylvain Letourneau - Canadian NRC

The following people made substantial intellectual contributions to the design:

John Anderson - SSEC Dave Fulker - Unidata Russ Rew - Unidata Glen Davis -
Unidata

VisAD is freely available including source code. It is protected by copyright state-
ments embedded in the source code and in the NOTICE, LICENSE and COPYING
files distributed with the source code.
The VisAD Java class library is actually VisAD version 2.0. VisAD versions 1.0

and 1.1 were written in C by Bill Hibbard, Brian Paul (of SSEC) and Andre Battaiola
(while visiting SSEC from INPE/CPTEC in Brazil) [8, 9], with substantial intellectual
contributions from Charles Dyer of the UW Computer Sciences Dept.
VisAD has adopted the UD Units library developed by Steve Emmerson of Unidata.

[http://www.unidata.ucar.edu/packages/udunits/index.html].
VisAD borrows design ideas and code from the Vis5D system for interactive visu-

alization of numerical simulations of weather and other environmental phenomena [6,
9, 10]. Vis5D was written in C by Bill Hibbard, Johan Kellum (of SSEC), Brian Paul,
Andre Battaiola, Dave Santek (of SSEC) and Marie-Francoise Voidrot-Martinez (while
visiting SSEC from METEO France).
Vis5D grew out of the 4-D McIDAS system [5, 6], which was part of Verner Suomi’s

McIDAS system for visualizing data from his weather satellites. The 4-D McIDAS
was the 3-D (plus animation) analog of Tom Whittaker’s 2-D graphics subsystem of
McIDAS, which was the first interactive weather graphics system.
The development of this software has been supported by NASA, EPA, NSF (via

Unidata and NCSA), NOAA, ARPA and DOE. We especially want to thank Joe Bre-
dekamp of NASA, Cliff Jacobs of NSF and Larry Smarr of NCSA for their support of
the Java VisAD. We are also grateful to the Charles and Mamie van Doren Foundation
for their support.

8

2 Overview

This is an overview of how applications are constructed using VisAD. Throughout this
guide, we will capitalize the proper names of VisAD classes such as Data and Display,
in accordance with Java custom. A VisAD application is a network of:

Data objects these may be simple real number values, text strings, vectors of real
numbers, arrays such as images or grids, or complex hierarchies of data. They
may include metadata for units, coordinate systems, complex sampling topolo-
gies, missing data indicators and error estimates, or they be simple values with
minimal metadata. Data objects are described more thoroughly in Section 3.
Section 3.12 explains the relation between data structures in VisAD and the C
programming language.

Display objects these generate interactive 3-D depictions of Data objects on a work-
station screen or in immersive virtual reality (such as a CAVE, ImmersaDesk,
or helmet). Display objects are linked to Data objects, so that Data depictions
are updated whenever Data values change. Some Displays implement direct
manipulation, which enables users to change Data values by re-drawing Data de-
pictions. Displays on different machines may be linked to the same Data objects,
in which case geographically distributed users may collaboratively visualize and
manipulate the same Data. Displays are described more thoroughly in Section
4.

Cell objects these are computations that are invoked whenever their input Data ob-
jects change value. They take their name from the cells of spread sheets. Like
displays, Cells are linked to Data objects through DataReference objects (in fact,
Displays and Cells both extend Action, the general class for objects whose ac-
tions are triggered by changing Data values). Cell objects are described more
thoroughly in Section 5.

User interface (UI) objects these are generally part of a UI component package such
as AWT or JFC, although there are a few specialized utility UI components in
the VisAD class library (described in Section 8). UI objects may also link to
Data objects. Data values may be changed by UI events (for example, sliders
may change the values of real number data objects), or UI components may link
to Actions so that they update whenever Data object values change.

9

DataReference objects these are pointers to Data objects. For example, in the state-
ment "x = 3", x plays the role of a DataReference object and 3 plays the role
of a Data object. The value of 3 cannot change just as many VisAD Data
classes have values that cannot change (these are called immutable classes). So
DataReference objects are necessary to represent variable data, just as the vari-
able "x" is necessary in programming languages. Display, Cell and UI objects
are linked to Data objects through DataReference objects. And DataReference
objects would be used as symbol table entries in VisAD applications that imple-
ment programming language interpreters. DataReference objects are described
more thoroughly in Section 3.11.

VisAD exploits Java Remote Method Invocation (RMI) so that Data, DataRefer-
ence, Display, Cell and user interface objects may be linked together independent of
their location on the network. Thus users at geographically remote workstations may
collaborate by constructing Displays and linking them to the same Data object. Ap-
plications can be developed with VisAD that enable users to locate Data objects via
web browsers and drag-and-drop them into Displays, link them into data analysis al-
gorithms, and share visualizations of the results with colleagues at other locations.
VisAD’s use of RMI is described more thoroughly in Section 6.
The World Wide Web has created a shared network of generally passive text and

image information. Distributed objects enabled by Java RMI will make this shared
network much more active; that is, a network that includes execution threads. The
VisAD system’s general data model and thorough use of Java RMI provide a way
to build a shared, active network of scientific data, displays and computations. This
network could:

1. Change dynamically.

2. Have many simultaneous users with their own sets of display and user interface
objects.

3. Have an indefinite life span, with users connecting and disconnecting but the
basic network remaining.

4. Support numerous interacting execution threads.

5. Provide entrance points via web pages.

2.1 A Very Simple Application Example
We start with an application that reads a time sequence of images from a netCDF file
and displays it with animation. There are only four executable lines of code in the
application that have anything to do with VisAD in code listing 2.1:

10

1. creating the netCDF file reader,

2. reading the file,

3. creating a display of the file, and

4. linking the display into a JFrame.

Listing 2.1: A very simple example of how easy a visualization program can get.

// import needed c l a s s e s
import visad . ∗ ;
import visad . util . DataUtility ;
import visad . java3d . DisplayImplJ3D ;
import visad . data . netcdf . Plain ;
import java . rmi . RemoteException ;
import java . io . IOException ;
import java . awt . ∗ ;
import javax . swing . ∗ ;

10
pub l i c c l a s s VerySimple {

// type ’ java VerySimple ’ to run t h i s app l i c a t i on
pub l i c s t a t i c void main (String args [])

throws VisADException , RemoteException , IOException {

// c r ea t e a netCDF reader
Plain plain = new Plain () ;

20 // read an image sequence from a netCDF into a data ob j e c t
DataImpl image_sequence = plain . open (" images . nc") ;

// c r ea t e a d i sp l ay f o r the image sequence
DisplayImpl display = DataUtility . makeSimpleDisplay (image_sequence) ;

// c r ea t e JFrame (i . e . , a window) f o r the d i sp l ay
JFrame frame = new JFrame ("VerySimple VisAD Appl i cat ion ") ;

// l i n k the d i sp l ay to the JFrame
30 frame . getContentPane () . add (display . getComponent ()) ;

// s e t the s i z e o f the JFrame and make i t v i s i b l e
frame . setSize (400 , 400) ;
frame . setVisible (t rue) ;

}
}

The VerySimple.java program is included in the visad/examples directory of the
VisAD source distribution. To run it you also need to download and uncompress the
images.nc file from ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z into your
visad/examples directory.

11

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z

2.2 A Simple Application Example
The VerySimple application is so simple that it hides the network of VisAD objects
it creates. Thus we present the Simple application which reads and displays the same
image sequence, but provides some user interaction and makes the network of objects
explicit. The diagram below shows the network of objects created by the Simple
application. Its user controls a real number Data object (an hour value) via a UI
slider, which in turn triggers a Cell to re-compute the value of a more complex Field
Data object (for example, this may be an image array selected from an image sequence),
whose depiction is updated in a Display.

UI slider ---> DataReference ---> Cell ---> DataReference ---> Display
| |
| |

Real hour Field image

This diagram corresponds to the simple application code listing 2.2.

Listing 2.2: A simple example of how easy a visualization program can get.

// import needed c l a s s e s
import visad . ∗ ;
import visad . java3d . DisplayImplJ3D ;
import visad . util . VisADSlider ;
import visad . data . netcdf . Plain ;
import java . rmi . RemoteException ;
import java . io . IOException ;
import java . awt . ∗ ;
import java . awt . event . ∗ ;

10 import java . awt . swing . ∗ ;

pub l i c c l a s s Simple {

// type ’ java Simple ’ to run t h i s app l i c a t i on
pub l i c s t a t i c void main (String args [])

throws VisADException , RemoteException , IOException {

// c r ea t e a DataReference f o r an image
f i n a l DataReference image_ref = new DataReferenceImpl (" image") ;

20
// c r ea t e a netCDF reader
Plain plain = new Plain () ;

// open a netCDF f i l e conta in ing an image sequence and adapt
// i t to a F i e ld Data ob j e c t
f i n a l Field image_sequence = (Field) plain . open (" images . nc") ;

// c r ea t e a Display us ing Java3D
DisplayImpl display = new DisplayImplJ3D (" image d i sp l ay ") ;

30
// ex t r a c t the type o f image and use
// i t to determine how images are d i sp layed

12

FunctionType image_sequence_type =
(FunctionType) image_sequence . getType () ;

FunctionType image_type =
(FunctionType) image_sequence_type . getRange () ;

RealTupleType domain_type = image_type . getDomain () ;
// map image coo rd ina t e s to d i sp l ay coo rd ina t e s
display . addMap (new ScalarMap ((RealType) domain_type . getComponent (0) ,

40 Display . XAxis)) ;
display . addMap (new ScalarMap ((RealType) domain_type . getComponent (1) ,

Display . YAxis)) ;
// map image b r i gh tne s s va lues to RGB (de f au l t i s grey s c a l e)
display . addMap (new ScalarMap ((RealType) image_type . getRange () ,

Display . RGB)) ;

// l i n k the Display to image_ref
// d i sp l ay w i l l update whenever image changes
display . addReference (image_ref) ;

50
// c r ea t e a DataReference and RealType f o r an ’ hour ’ va lue
f i n a l DataReference hour_ref = new DataReferenceImpl ("hour") ;
RealType hour_type =

(RealType) image_sequence_type . getDomain () . getComponent (0) ;
// and l i n k i t to a s l i d e r
VisADSlider slider = new VisADSlider ("hour" , 0 , 3 , 0 , 1 . 0 ,

hour_ref , hour_type) ;

// c r ea t e a Ce l l to ex t r a c t an image at ’ hour ’
60 // (t h i s i s an anonymous inner c l a s s extending Cel l Impl)

Cell cell = new CellImpl () {
pub l i c void doAction () throws VisADException , RemoteException {

// ex t r a c t image from sequence by eva lua t ing image_sequence
// F ie ld at ’ hour ’ va lue
image_ref . setData (image_sequence . evaluate (

(Real) hour_ref . getData ())) ;
}

} ;
// l i n k c e l l to hour_ref to t r i g g e r doAction whenever

70 // ’ hour ’ va lue changes
cell . addReference (hour_ref) ;

// c r ea t e JFrame (i . e . , a window) f o r d i sp l ay and s l i d e r
JFrame frame = new JFrame ("Simple VisAD Appl i cat ion ") ;
frame . addWindowListener (new WindowAdapter () {

pub l i c void windowClosing (WindowEvent e) { System . exit (0) ; }
}) ;

// c r ea t e JPanel in JFrame
80 JPanel panel = new JPanel () ;

panel . setLayout (new BoxLayout (panel , BoxLayout . Y_AXIS)) ;
panel . setAlignmentY (JPanel . TOP_ALIGNMENT) ;
panel . setAlignmentX (JPanel . LEFT_ALIGNMENT) ;
frame . getContentPane () . add (panel) ;

// add s l i d e r and d i sp l ay to JPanel
panel . add (slider) ;
panel . add (display . getComponent ()) ;

90 // s e t s i z e o f JFrame and make i t v i s i b l e
frame . setSize (500 , 600) ;
frame . setVisible (t rue) ;

}

13

}

Creating the DataReferences for ’hour’ and ’image’ and linking them to the VisAD-
Slider and Cell is simple. Creating the Display and linking it to the ’image’ DataRefer-
ence is also simple. Setting up the JFrame and JPanel are not too difficult and really
independent of VisAD. The only complex part of this application is extracting the
image’s type information for use in setting up the Display. Every VisAD Data object
has a MathType that describes its basic structure. Every real number value occurring
in a complex Data object has a RealType, a subclass of MathType, that includes a
name like "latitude", "time" or "temperature". The code in our simple application
extracts the RealTypes from the MathType of the image so that it can define different
display roles for the real number values occurring in the image. The image Data object
is interpreted as a function that maps pixel locations into pixel brightnesses, and its
MathType, denoted image_type, is a FunctionType that includes MathTypes for the
function’s domain and range. The image_type can be diagrammed as:

FunctionType (image_type)
/ \

function domain function range
RealTupleType RealType (brightness)
/ \ |

RealType (line) RealType (element) |
| | |
| | |
v v v

XAxis YAxis RGB

Note that the bottom of the diagram includes the scalar mappings of image_type’s
RealType components to DisplayRealTypes: XAxis, YAxis and RGB (RGB indicates
a pseudo color lookup table that maps brightness values to red, green and blue values).
The image_sequence Data object is treated as a function from time (hours) to

images, so its MathType, denoted image_sequence_type, is also a FunctionType that
can be diagrammed as:

FunctionType (image_sequence_type)
/ \

function domain function range
RealType (hour) FunctionType (image_type)

/ \
function domain function range
RealTupleType RealType (brightness)

14

/ \
RealType (line) RealType (element)

Note that the image_type diagram is replicated in the range of this image_sequence_type
diagram.
The call to the getType method of image_sequence returns its MathType, and then

the calls to the getRange, getDomain and getComponent methods are used to parse
the tree structure of the MathType to extract the RealTypes at the leaves of the
tree. These RealTypes are then mapped to display coordinates such as Display.XAxis
and Display.YAxis, and to display colors such as Display.RGB, using the ScalarMap
constructors that are attached to the Display via its addMap method.
Note that image_sequence is treated as a function from a set of hour values to a

set of images, and the evaluate method of image_sequence evaluates this function at
an hour value and returns an image. Thus the doAction method of our computational
Cell applies the evaluate method of image_sequence to an hour value to extract an
image. Note also that image_sequence is declared as a Field, which is the VisAD class
for functions represented by finite samplings.
In order to run the Simple application you need to download and uncompress the

netCDF file "images.nc" from ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.
nc.Z.
Response may be sluggish due to a problem with threads in early versions of Java3D.

We should point out that the logic of this simple application, interactively selecting
and displaying an image from an image sequence, can be implemented more simply
and with faster response in a VisAD Display by mapping the "hour" RealType to
Display.SelectValue. However, the Simple application is a nice illustration of how
Data, DataReference, UI, Display and Cell objects can be linked together.
Section 12.3 describes a more complex application that creates a network of linked

Data, DataReference, Display, Cell and UI objects distributed around the network
to support collaboration among users at geographically remote locations. This ap-
plication also includes direct manipulation Displays, where users change Data values
by re-drawing their depictions. Appendix B is a complete source code listing of this
application.
While the application described in Section 12.3 is more complex than the one pre-

sented here, it is still specific to a particular scientific problem. VisAD can be used
to build much more flexible and generic applications. It would not be difficult to con-
struct a generic spread sheet consisting of an array of Displays with one Data object
per Display. UI components could let users add new Displays as needed and define the
source of Data as: 1) a file, 2) direct manipulation in the Display, or 3) a mathematical
expression involving Data objects in other Displays. VisAD could also be used as the
basis for implementing a data flow system, or an interpreted numerical programming
language.

15

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z

2.3 Flexible Design by Reduction to Elements
The VisAD system offers a reductionist approach to design, as illustrated in the simple
example of Section 2.2. Its image and image_sequence Data objects were defined
as hierarchies of simple real values, and the Display for the image Data object was
defined by mappings of its real values. This reductionist approach is very flexible in
dealing with novel applications. The VisAD data model, described in Section 3, enables
developers to define many different numerical data structures in terms of hierarchies
built up from simple real numbers and text strings, and enables developers to attach
various types of metadata to values at different levels in the hierarchy.
The integration of metadata could allow a developer to define a sophisticated type

for 2-D image data as finite samplings of continuous functions from 2-D pixel loca-
tions, such as (line, element) or (latitude, longitude), to one or more pixel radiances.
Image metadata may include units for location and radiance values (e.g., radians or
degrees for latitude and longitude locations), sampling topologies and geometries for
pixel locations (most images have rectangular topologies, rectangular geometries in
(line, element) locations but curvilinear geometries in (latitude, longitude) locations),
coordinate systems for pixel locations (images with (line, element) locations may spec-
ify mathematical transformations to (latitude, longitude) locations), missing radiance
indicators, and error estimates for pixel radiances and locations. Developers also have
the option to ignore most of these types of metadata, and implement images as simple
arrays without units, coordinate transformations, missing data or error estimates, and
sampled on rectangular integer lattices (i.e., pixels are addressed by integer line and
element indices, much as they are in Fortran or C arrays).
The VisAD display model offers a similar reductionist approach. Developers define

displays for complex numerical data objects in terms of mappings (the ScalarMap
class) from their primitive real number elements (the RealType class) to the conceptual
elements of displays (the DisplayRealType class). Developers can also attach various
types of display metadata and interactive controls to these mappings. Developers may
even define new kinds of display elements by defining new DisplayRealTypes. This is
described in detail in Section 4.
Designing VisAD data types and displays is similar to designing database schemas

and views. In fact, most of the differences between VisAD data types and database
schemas can be traced to the fact that databases model discrete entities while numerical
data are discrete approximations to continuous entities.
VisAD’s reduction to elements is very powerful for adapting to new applications,

but, like database schema design, can also be a challenge. The power comes from
providing a context in which developers can answer questions like "What is the nature
of an image?" However, an end user who merely wants to display an image should not
have to first answer such questions. Thus VisAD user interfaces should present choices
to end users in higher-level terms such as images, grids and tables. Of course, it is

16

possible to build user interfaces for VisAD that do defer such questions to end users,
in order to give them the full power of the data model.
We also anticipate the development of intermediate class libraries between the core

VisAD system and end user interfaces, which define higher-level application-specific
data classes such as images, grids and tables. The methods of these higher-level data
classes can encapsulate metadata manipulation in terms of higher-level data opera-
tions, including display methods that encapsulate manipulation of ScalarMaps from
RealTypes to DisplayRealTypes. Such intermediate class libraries may simplify the
task for those developing user interfaces for end users.

2.4 The Value of Integrated Metadata
The goal of integrating metadata is actually to create systems that enable end users
to ignore metadata (but also to manipulate metadata if they wish to). For example, a
user might read weather model output grids from several different models and several
different file formats, each sampled at different map projections, at different vertical co-
ordinate systems and at different time steps. The file format adapters will read each file
into a VisAD Data object that includes the grid data and metadata objects containing
the grid’s spatial and temporal sampling information. Display objects will use these
metadata objects to display the grid data co-located in space and time. Furthermore,
arithmetical operations will also co-locate the data. For example, if temperatures from
one model are subtracted from temperatures from another model, the temperatures
from the second will be resampled to the spatial and temporal locations of the first
before they are subtracted. If the two models use different temperature units, these
will be converted before values are subtracted, and before they are displayed together.
Section 3.12 uses code examples to illustrate how VisAD can be used for simple

array operations like those used in the C programming language, but can also be used
for high-level operations on arrays of data that integrate metadata.
Users who want to control all aspects of their computations may do so by explicitly

manipulating and extending the VisAD metadata classes. Note in particular Section
3.3 on Units, 3.4 on CoordinateSystems, and Section 3.5.1 on Defining Interpolation
Algorithms by Extending the Set Class.
As the Internet enables greater data sharing among scientists, it increases the prob-

lems associated with metadata and file format differences among scientists. Metadata
integration in a common data model is an important tool for addressing these prob-
lems, both for those users who want to ignore metadata and those who want to control
metadata.

17

2.5 Toolkit for Designing Interaction Techniques
Interactivity is the key to understanding numerical data and computations. This has
been the driving principal behind the development of Vis5D and VisAD. The most
basic interaction mode is rotating 3-D scenes, which resolves the inherent ambiguity
problem of 3-D graphics. That is, while 3-D graphics are more dramatic than 2-D
graphics, they suffer from the problem that every point on a 2-D display screen or
on the viewer’s 2-D retinas corresponds to many points in the 3-D scene. Rotating
the scene, whether in response to mouse movements for workstation displays or in
response to head motion in immersive virtual reality displays, is the most effective
way to resolve this ambiguity.
Once the necessary graphics speed is attained for interactive 3-D rotation, it can

be exploited for all sorts of other interaction modes, such as dragging plane slices and
other specialized graphics through data volumes, selecting various combinations of
fields to visually compare, animating time dynamics, editing color maps, etc. VisAD
supports all of these ’ordinary’ graphical interaction modes when used with sufficiently
fast graphics hardware.
When computations can also be done with fast response times, they may be coupled

with interactive graphics to create an interaction mode known as ’computational steer-
ing’. By allowing Data, computational Cells, Displays and user interface components
to be connected flexibly, VisAD supports computational steering interactions.
Beyond ordinary graphical interactions and computational steering, VisAD is de-

signed to support a number of more sophisticated graphical interaction modes. These
include:

1. Exploring visualization designs: experimenting with different ways to display the
same data. VisAD allows users to determine how Data are depicted by defining
a set of ScalarMaps from data primitives (i.e., RealTypes) to display primitives
(i.e., DisplayRealTypes). Graphical user interfaces can be developed for defining
ScalarMaps, enabling users to interactively experiment with display designs. For
example, users might define ScalarMaps by dragging graphical icons representing
RealTypes onto graphical icons representing DisplayRealTypes.

2. Direct manipulation: user interaction directly with data depictions. In particular
VisAD allows users to modify Data values by re-drawing their depictions. While
many ordinary graphical interactions have direct manipulation interfaces, they
are usually not user-definable and have simple parameterizations in terms of
one or a few real numbers. VisAD allows changes to larger Data objects to be
connected through computational Cells and back to graphical Displays for more
complex and user-defined graphical interactions.

3. Event driven computations and displays: re-computation and re-displays are

18

triggered by data changes resulting from user interactions or running simula-
tions. This extends the business spread sheet from simple numbers to complex
numerical Data objects and their interactive 3-D visualizations. VisAD’s Data,
Display and Cell classes provide the tools for building numerical spread sheets.

4. Remote collaboration: geographically remote users share visualizations and user
interfaces as if sitting in front of the same workstation. VisAD allows multi-
ple remote Displays to share connections to a common set of Data objects and
computational Cells.

Given this variety of basic interaction modes, VisAD can be viewed as a toolkit
for building interaction techniques, in the same way that it and other systems are
toolkits for building visualizations. The building blocks for interaction techniques are
events, Display controls, direct manipulation, computational Cells, and shared access
to Data across the network. Sections 4.4.2 and 6.3 present interesting small examples
of building interaction techniques.

19

3 Data Model

The VisAD data model was designed to support virtually any numerical data. Rather
than providing a variety of specific data structures like images, grids and tables, the
VisAD data model defines a set of classes that can be used to build any hierarchical
numerical data structures.
Data objects all have a class in the class hierarchy under Data, and all define a

hierarchical composition of complex Data objects from primitive Data objects. The
primitive (scalar) Data classes are Real and Text. A Real object contains a real number
value (i.e., a member of R, the set of all real numbers) represented by a Java double.
A Text object contains a text string. Complex hierarchical Data objects are built from
these primitives using the Tuple, Set and Function classes. A Tuple object contains
a set of components whose number, sequence and type are fixed by the MathType
of the Tuple. A Set object represents a set of points in an n-dimensional real vector
space (denoted by Rn). There are a great variety of ways of representing such Sets, as
described in Section 3.5. Note that a Tuple with n Real components is a RealTuple and
represents a single point in Rn. A Function object represents a function from Rn to
values of some specific type. Field is the subclass of Function for functions represented
by finite sets of samples of function values (for example, a satellite image samples
a continuous radiance function at a finite set of pixel locations). The Data classes
implement methods for various binary and unary mathematical operations (e.g., add,
multiply, sqrt), as well as specialized operations such as Function evaluation and Tuple
component access. The Data class hierarchy is described in more detail in Section 3.2.
Data objects include metadata defined by the classes: MathType, Unit, Coordi-

nateSystem, Set (function domain sampling), ErrorEstimate and AuditTrail, as well
as missing data indicators. The details of these different forms of metadata are de-
scribed in Sections 3.1 and 3.3 - 3.8. Metadata are integrated into mathematical and
visualization operations. For example Unit conversions and CoordinateSystem trans-
forms are done implicitly as needed in Data operations.

3.1 MathTypes
Numerical data objects are finite approximations to idealized mathematical objects
such as real numbers, vectors, sets and functions. Thus every Data object has a
MathType, which indicates the type of mathematical object that it approximates.

20

The MathType class hierarchy is:

MathType
ScalarType

RealType
TextType

TupleType
RealTupleType

SetType
FunctionType

The starting point for any new application of VisAD is defining a set of MathTypes
for the Data objects involved. This set of MathTypes provides a context for defining
metadata, data displays, and data analysis operations. This is similar to the way that
database schemas provide a context for defining database applications. Developers us-
ing the VisAD class library can think about MathTypes using the following shorthand
syntax:

MathType := ScalarType | TupleType | SetType | FunctionType
ScalarType := RealType | TextType
RealType := name
TextType := name
TupleType := (MathType , MathType , ..., MathType)
TupleType := RealTupleType
RealTupleType := (RealType , RealType , ..., RealType)
SetType := set (RealTupleType)
FunctionType := (RealTupleType -> MathType)
FunctionType := (RealType -> MathType)

where TupleType and RealTupleType each have at least one component. For exam-
ple, a satellite image of Earth may be a finite sampling of a continuous function with
MathType:

((latitude, longitude) ->
(radiance_channel_1, ..., radiance_channel_N))

The output of a weather model may be described using the MathType:

(time -> ((latitude, longitude, altitude) ->
(temperature, pressure, dewpoint, wind_u, wind_v, wind_w)))

And a set of map boundaries may be described using the MathType:

21

set ((latitude, longitude))

Note that the prettyString method of MathType returns a String with this shorthand
notation for any VisAD MathType. The static stringToType method of MathType
takes a String argument, which is assumed to be in this shorthand notation, and returns
the corresponding MathType (of course, MathTypes returned by stringToType do not
include any non-null default Units, CoordinateSystems or Sets).
MathTypes are a form of metadata that describe data organization. For example,

weather model output are often stored in files as independent 2-D grids, where any
higher-level organization must be deduced by comparing the metadata associated with
each grid. MathTypes provide a way to explicitly document such higher-level data
organizations.
Every scalar (i.e., primitive) value occurring in a Data object is associated with a

named ScalarType occurring in the Data object’s MathType. These names are used
to control how the Data object is displayed, as described in Section 4.1.
Some MathTypes include default values for various kinds of metadata, including

Units (see Section 3.3), CoordinateSystems (see Section 3.4), and samplings (see Sec-
tion 3.5). Although these defaults may be over-ridden for Data values, the defaults
define equivalence classes of convertible Units and CoordinateSystems among Data
values with the same MathTypes, with convertibility enforced by the system. Note
that application developers may opt out of Units, CoordinateSystems and any other
form of metadata by setting that form of metadata to null in MathType and Data
object constructors (however, developers may not opt out of MathTypes and Field
samplings, which are mandatory).
MathType is abstract and serializable. A MathType object can only be local (see

Section 6 for more information). Its subclasses are all immutable.

3.1.1 RealType Constructors
RealType includes the following constructors:

Listing 3.1: RealType Constructors

/∗∗ name o f type (two RealTypes are equal i f t h e i r names are equal) ;
d e f au l t Unit f o r va lues o f t h i s type and may be nu l l ; d e f au l t Set
used when t h i s type i s a FunctionType domain and may be nu l l ∗/
pub l i c RealType (String name , Unit default_unit , Set default_set)

throws VisADException ;
/∗∗ name o f type (two RealTypes are equal i f t h e i r names are equal) ;
d e f au l t Unit and Set are nu l l ∗/
pub l i c RealType (String name) throws VisADException ;

22

3.1.2 TextType Constructor
TextType includes the following constructor:

Listing 3.2: TextType Constructors

/∗∗ name o f type (two TextTypes are equal i f t h e i r names are equal) ∗/
pub l i c TextType (String name) throws VisADException ;

3.1.3 TupleType Constructor
TupleType includes the following constructor:

Listing 3.3: TupleType Constructors

/∗∗ array o f component types ∗/
pub l i c TupleType (MathType [] types) throws VisADException ;

3.1.4 RealTupleType Constructors
RealTupleType includes the following constructors:

Listing 3.4: RealTupleType Constructors

/∗∗ array o f component types ;
d e f au l t CoordinateSystem f o r va lues o f t h i s type (i n c l ud ing
Function domains) and may be nu l l ; d e f au l t Set used when t h i s
type i s a FunctionType domain and may be nu l l ∗/
pub l i c RealTupleType (RealType [] types ,

CoordinateSystem default_coordinate_system , Set default_set)
throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with one component ∗/
10 pub l i c RealTupleType (RealType a ,

CoordinateSystem default_coordinate_system , Set default_set)
throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with two components ∗/
pub l i c RealTupleType (RealType a , RealType b ,

CoordinateSystem default_coordinate_system , Set default_set)
throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with three components ∗/
20 pub l i c RealTupleType (RealType a , RealType b , RealType c ,

CoordinateSystem default_coordinate_system , Set default_set)
throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with four components ∗/

23

pub l i c RealTupleType (RealType a , RealType b , RealType c , RealType d ,
CoordinateSystem default_coordinate_system , Set default_set)
throws VisADException ;

/∗∗ array o f component types ;
30 d e f au l t CoordinateSystem and Set are nu l l ∗/

pub l i c RealTupleType (RealType [] types) throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with one component ∗/
pub l i c RealTupleType (RealType a) throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with two components ∗/
pub l i c RealTupleType (RealType a , RealType b) throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with three components ∗/
40 pub l i c RealTupleType (RealType a , RealType b , RealType c)

throws VisADException ;

/∗∗ cons t ruc t a RealTupleType with four components ∗/
pub l i c RealTupleType (RealType a , RealType b , RealType c , RealType d)

throws VisADException ;

3.1.5 FunctionType Constructor
FunctionType includes the following constructor:

Listing 3.5: FunctionType Constructors

/∗∗ domain must be a RealType or a RealTupleType ;
range may be any MathType ∗/
pub l i c FunctionType (MathType domain , MathType range)

throws VisADException ;

3.1.6 SetType Constructor
SetType includes the following constructor:

Listing 3.6: SetType Constructors

/∗∗ domain must be a RealType or a RealTupleType ∗/
pub l i c SetType (MathType domain) throws VisADException ;

3.1.7 MathType Methods
Generally useful MathType methods include:

24

Listing 3.7: MathType Constructors

/∗∗ r e tu rn s a miss ing Data ob j e c t f o r any MathType ∗/
pub l i c Data missingData () throws VisADException ;

/∗∗ re turn a St r ing that indents complex MathTypes
f o r human r e a d ab i l i t y ∗/
pub l i c String prettyString () ;

/∗∗ re turn an array o f ScalarMaps that i s an " i n t u i t i v e "
guess at a good way to v i s u a l i z e t h i s MathType ;

10 r e tu rns nu l l i f i t can ’ t make a good guess ∗/
pub l i c ScalarMap [] guessMaps (boolean threeD) ;

/∗∗ ScalarTypes are equal i f they have the same name ;
TupleTypes are equal i f t h e i r components are equal ;
FunctionTypes are equal i f t h e i r domains and ranges
are equal ∗/
pub l i c boolean equals (Object obj) ;

/∗∗ t h i s i s u s e f u l f o r determining compat i b i l i t y o f
20 Data ob j e c t s f o r binary mathematical ope ra t i on s ;

any RealTypes are equal ; any TextTypes are equal ;
TupleTypes are equal i f t h e i r components are equal ;
FunctionTypes are equal i f t h e i r domains and ranges
are equal ∗/
pub l i c boolean equalsExceptName (MathType type) ;

/∗∗ c r ea t e a MathType from i t s s t r i n g r ep r e sn e t a t i on ;
e s s e n t i a l l y the i nv e r s e o f the p r e t t yS t r i ng method ∗/
pub l i c s t a t i c MathType stringToType (String s) throws VisADException ;

3.1.8 ScalarType Methods
Generally useful ScalarType methods include:

Listing 3.8: ScalarType Methods

pub l i c String getName () ;

3.1.9 RealType Methods
Generally useful RealType methods include:

Listing 3.9: RealType Methods

/∗∗ re turn any RealType const ructed in t h i s JVM with name ,
or nu l l ∗/
pub l i c s t a t i c RealType getRealTypeByName (String name) ;

25

/∗∗ get d e f au l t Unit ∗/
pub l i c Unit getDefaultUnit () ;

/∗∗ get d e f au l t Set ∗/
pub l i c Set getDefaultSet () ;

10
/∗∗ t h i s i s a v i o l a t i o n o f MathType immutabi l i ty to a l low a
a RealType to be an argument (d i r e c t l y or through a
SetType) to the cons t ruc to r o f i t s d e f au l t Set ;
t h i s method throws an Exception i f g e tDe fau l tSe t has
p r ev i ou s l y been invoked ∗/
pub l i c void setDefaultSet (Set set) throws VisADException ;

3.1.10 TupleType Methods
Generally useful TupleType methods include:

Listing 3.10: TupleType Methods

/∗∗ re turn number o f components ∗/
pub l i c i n t getDimension () ;

/∗∗ re turn component f o r index between 0 and getDimension () − 1 ∗/
pub l i c MathType getComponent (i n t index) throws VisADException ;

/∗∗ re turn index o f f i r s t component with type ;
i f no such component , re turn −1 ∗/
pub l i c RealType getIndex (MathType) throws VisADException ;

10
/∗∗ re turn index o f f i r s t RealType component with name ;
i f no such component , re turn −1 ∗/
pub l i c RealType getIndex (String name) throws VisADException ;

3.1.11 RealTupleType Methods
Generally useful RealTupleType methods include:

Listing 3.11: RealTupleType Methods

/∗∗ get d e f au l t Units o f RealType components ∗/
pub l i c Unit [] getDefaultUnits () ;

/∗∗ get d e f au l t CoordinateSystem ∗/
pub l i c CoordinateSystem getCoordinateSystem ()

/∗∗ get d e f au l t Set ∗/
pub l i c Set getDefaultSet () ;

10 /∗∗ t h i s i s an unavoidable v i o l a t i o n o f MathType immutabi l i ty −
a RealTupleType must be an argument (d i r e c t l y or through a

26

SetType) to the cons t ruc to r o f i t s d e f au l t Set ;
t h i s method throws an Exception i f g e tDe fau l tSe t has
p r ev i ou s l y been invoked ∗/
pub l i c void setDefaultSet (Set set) throws VisADException ;

3.1.12 FunctionType Methods
Generally useful FunctionType methods include:

Listing 3.12: FunctionType Methods

/∗∗ i f the domain passed to cons t ruc to r was a RealType ,
getDomain r e tu rn s a RealTupleType with that RealType
as i t s s i n g l e component ∗/
pub l i c RealTupleType getDomain () ;

pub l i c MathType getRange () ;

3.1.13 SetType Methods
Generally useful SetType methods include:

Listing 3.13: SetType Methods

/∗∗ i f the domain passed to cons t ruc to r was a RealType ,
getDomain r e tu rn s a RealTupleType with that RealType
as i t s s i n g l e component ∗/
pub l i c RealTupleType getDomain () ;

3.1.14 Application Example: Synthesizing MathTypes
Applications that construct Data objects from numerical values they compute generally
need to synthesize MathTypes from their RealType components. Here’s a sample of
code for synthesizing a MathType appropriate for a Vis5D data set (this is roughly
the inverse of the code in Section 3.1.15):

Listing 3.14: Application Example: Synthesizing MathTypes

// cons t ruc t RealType components f o r g r id coo rd ina t e s
RealType row = new RealType ("row" , nul l , nu l l) ;
RealType column = new RealType ("column" , nul l , nu l l) ;
RealType level = new RealType (" l e v e l " , nu l l , nu l l) ;

27

// cons t ruc t RealTupleType f o r g r id coo rd ina t e s
RealType [] types3d = {row , column , level } ;
RealTupleType domain = new RealTupleType (types3d) ;

10 // cons t ruc t RealType components f o r g r id f i e l d s
RealType temperature = new RealType (" temperature " , nu l l , nu l l) ;
RealType pressure = new RealType (" p r e s su r e " , nu l l , nu l l) ;
RealType water_vapor = new RealType ("water_vapor" , nu l l , nu l l) ;

// cons t ruc t RealTupleType f o r g r id f i e l d s
RealType [] field3d = { temperature , pressure , water_vapor } ;
RealTupleType range = new RealTupleType (field3d) ;

// cons t ruc t FunctionType f o r g r id
20 FunctionType grid_type = new FunctionType (domain , range) ;

// cons t ruc t RealType and RealTupleType f o r time domain
RealType time = new RealType (" time" , nu l l , nu l l) ;
RealTupleType time_type = new RealTupleType (time) ;

// cons t ruc t FunctionType f o r time sequence o f g r i d s
FunctionType vis5d_type = new FunctionType (time_type , grid_type) ;

3.1.15 Application Example: Analyzing MathTypes
Applications that get Data objects from file format adapters (described in Section 7)
generally need to analyze MathTypes to extract their RealType components. The
Vis5DForm class adapts Data objects from Vis5D files, whose MathTypes have the
general form:

(time -> ((row, column, level) -> (field1, field2, ..., fieldN)))

That is, they are time sequences of multivariate 3-D grids. Here’s a sample of
MathType analysis code (this is roughly the inverse of the code in Section 3.1.14):

Listing 3.15: Application Example: Analyzing MathTypes

// get the MathType o f a Data ob j e c t named ’ v i s5d ’
FunctionType vis5d_type = (FunctionType) vis5d . getType () ;

// ex t r a c t time , the domain o f the FunctionType
RealType time = (RealType) vis5d_type . getDomain () . getComponent (0) ;

// get grid_type , i t s e l f a FunctionType and the range o f the
// vis5d_type FunctionType
FunctionType grid_type = (FunctionType) vis5d_type . getRange () ;

10
// get the g r id domain RealTupleType
RealTupleType domain = grid_type . getDomain () ;

// get the g r id domain component RealType − they are g r id coo rd ina t e s
RealType row = (RealType) domain . getComponent (0) ;

28

RealType column = (RealType) domain . getComponent (1) ;
RealType level = (RealType) domain . getComponent (2) ;

// get the g r id range − i t i s a RealTupleType o f f i e l d s
20 RealTupleType range = (RealTupleType) grid_type . getRange () ;

// get the number o f g r id range components
i n t dim = range . getDimension () ;

// cons t ruc t an array to hold the g r id range RealTypes
RealType [] range_types = new RealType [dim] ;

// get the g r id range RealTypes
f o r (i n t i=0; i<dim ; i++) {

30 range_types [i] = (RealType) range . getComponent (i) ;
}

3.2 Data Class Hierarchy
The Data hierarchy is:

Data
Scalar

Real
Text

Tuple
RealTuple

Set
(there is a large hierarchy under Set as described in Section 3.5)

Function
Field

FlatField

To some extent the Data hierarchy mirrors the MathType hierarchy. However, it is
important to note that MathType is not a synonym for Data class, since Data classes
may be elaborated into different forms of finite representation of the corresponding
MathTypes. For example, Set is elaborated into a large number of different ways of
representing subsets of Rn. Similarly, Function is elaborated into Field, for functions
represented by finite samplings, and FlatField, for Fields with simple range values
that can be represented by small numbers of Java’s primitive data types rather than by
objects. Developers may extend the Data classes to define new forms of representation.
For example, a developer could extend Real to define a representation by ratios of
infinite- precision integers rather than the Java primitive double used by Real (doubles
are used by Real because experience has shown that using floats as the default can

29

cause round-off problems that are extremely difficult for application developers to
detect and diagnose).
The Data hierarchy is also elaborated for various data storage locations and formats.

Section 6 describes how the hierarchy for Data and other VisAD classes is structured
for local and remote objects, and Section 7 describes how the Data class hierarchy is
adapted to import data from various file formats. The Data hierarchy is being adapted
to netCDF, HDF and FITS files, and developers may extend this to other file formats.
Thus data are accessible via the VisAD Data API (Application Programming Interface)
independent of storage location, file format and approximating representation.
The metadata classes described in Sections 3.1 and 3.3 - 3.8 define how Data objects

approximate mathematical objects and how they model the world.
Data is an interface that may apply to both local and remote Data objects. DataImpl

is an abstract class that only applies to local Data objects, and RemoteData is an
interface that only applies to remote Data objects (see Section 6 for more information).
DataImpl is cloneable and serializable. All of its subclasses except FieldImpl and
FlatField are immutable. API documentation for the Set class hierarchy is described
in Section 3.5 and for FlatFields is described in Section 3.9, rather than here.

3.2.1 Real Constructors
Real includes the following constructors:

Listing 3.16: The Real Constructors

/∗∗ uni t and e r r o r may be nu l l ∗/
pub l i c Real (RealType type , double value , Unit unit , ErrorEstimate error)

throws VisADException ;

/∗∗ use RealType . Generic ∗/
pub l i c Real (double value)

3.2.2 Text Constructor
Text includes the following constructor:

Listing 3.17: The Text Constructors

pub l i c Text (TextType type , String value) throws VisADException ;

/∗∗ use TextType . Generic ∗/
pub l i c Text (String value)

30

3.2.3 Tuple Constructors
Tuple includes the following constructors:

Listing 3.18: The Tuple Constructors

/∗∗ t h i s c on s t ruc t s i t s MathType from the MathTypes o f the
data array ; components are cop i e s o f data ∗/
pub l i c Tuple (Data [] data) throws VisADException , RemoteException ;

/∗∗ only copy data i f copy == true ∗/
pub l i c Tuple (Data [] data , boolean copy)
throws VisADException , RemoteException ;

3.2.4 RealTuple Constructors
RealTuple includes the following constructors:

Listing 3.19: The RealTuple Constructors

/∗∗ coordinate_system may be nu l l ; o therwi se
coordinate_system . getRe fe rence () must equal
type . getCoordinateSystem . getRe fe rence () ∗/
pub l i c RealTuple (RealTupleType type , Real [] reals , CoordinateSystem ←↩

coordinate_system)
throws VisADException , RemoteException ;

pub l i c RealTuple (Real [] reals) throws VisADException , RemoteException ;

3.2.5 Field Constructors
Field is an interface implemented by FieldImpl for local Fields and RemoteFieldImpl
for remote Fields. See Section 6 for more information about distributed computing.
These classes have the following constructors:

Listing 3.20: The Field Constructors

/∗∗ Fie ldImpl i s the most gene ra l sampled func t i on ;
domain_set d e f i n e s the domain sampling ;
i f i t i s nu l l , use the d e f au l t Set o f type . getDomain () ;
domain_set d e f i n e s the Units and CoordinateSystem
of the F i e ld domain ∗/
pub l i c FieldImpl (FunctionType type , Set domain_set)

throws VisADException ;

/∗∗ use the d e f au l t Set o f type . getDomain () ∗/
10 pub l i c FieldImpl (FunctionType type) throws VisADException ;

31

/∗∗ cons t ruc t a RemoteFieldImpl ob j e c t to prov ide remote
ac c e s s to f i e l d ∗/
pub l i c RemoteFieldImpl (FieldImpl field)

throws VisADException , RemoteException ;

3.2.6 Data Methods
A Data object may be either local or remote, a DataImpl object may only be local
and a RemoteData object may only be remote (see Section 6 for more information).
The methods in this section define the universal operations applicable to all Data
objects: getType returns a Data object’s MathType, isMissing indicates whether the
Data object has missing value (but note that even is a Data object is not missing,
it may still have sub-objects with missing values), and local replaces a RemoteData
object with a local DataImpl copy.
The binary and unary methods define basic mathematical operations on Data that

are the building blocks for data analysis using VisAD. The binary and unary methods
have wrapper methods for specific operations like add and sin. These operations are
defined point-by-point for Tuple and Function Data objects, so that for example, the
sin of a Function is a Function whose values are the sines of the original Function’s
values.
When add (or any other binary operation) is applied to two Fields the result is a

Field whose values are the sums (or other operation) of the values of the two Func-
tions, but only if the MathTypes of the two Fields match. MathType matching is
defined recursively on TupleTypes and FunctionTypes in terms of their components,
any RealType matches any RealType, and any TextType matches any TextType (thus
matching Functions must have domains with the same dimension).
Most important, binary and unary operations on Data objects involve their meta-

data. When two Fields are added, the domain samples of one are resampled to the
domain samples of the other, including any necessary Unit conversions of Real compo-
nents of the domains and any necessary CoordinateSystem transformations between
RealTuple domains. The range values of one Field are estimated at the domain sample
locations of the other Field using either nearest neighbor or weighted average algo-
rithms, as specified in the optional resampling_mode argument to binary methods.
Unit conversions and CoordinateSystem transformations are also applied as needed to
range values of Fields before they are added. Furthermore, ErrorEstimates attached to
Field range values are modified to reflect error effects of binary and unary operations.
ErrorEstimate propagation may assume either that operand errors are independently
or dependently distributed, or ErrorEstimate propagation may be disabled, using the
error_mode argument to binary and unary methods.
In some cases Data objects may be combined in binary operations even if their

32

MathTypes do not match. For example, a Real object may be combined with any
other Data object, and a Functions may be combined with Data objects that match
the MathType of the Function’s range.

Listing 3.21: The MathType Constructors

pub l i c MathType getType ()
throws VisADException , RemoteException ;

/∗∗ f l a g i nd i c a t i n g whether Data ob j e c t has miss ing value ∗/
pub l i c boolean isMissing ()
throws VisADException , RemoteException ;

/∗∗ i f remote , r e turn a l o c a l copy ;
i f l o c a l , r e turn t h i s ∗/

10 pub l i c DataImpl local ()
throws VisADException , RemoteException ;

/∗∗ gene ra l b inary operat ion between t h i s and data ; operat ion may
be Data .ADD, Data .SUBTRACT, etc ; these inc lude a l l b inary
ope ra t i on s de f ined f o r Java p r im i t i v e data types ; new_type
i s the MathType o f the r e s u l t ; sampling_mode may be
Data .NEAREST_NEIGHBOR or Data .WEIGHTED_AVERAGE; error_mode
may be Data .INDEPENDENT, Data .DEPENDENT or Data .NO_ERRORS ∗/
pub l i c Data binary (Data data , i n t operation , MathType new_type ,

20 i n t sampling_mode , i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ l i k e prev ious s i gna tu r e o f binary , except the r e s u l t takes
the MathType o f t h i s un l e s s the d e f au l t Units o f that MathType
c o n f l i c t with Units o f the r e su l t , in which case a g ene r i c
MathType with appropr ia te Units i s cons t ructed ∗/
pub l i c Data binary (Data data , i n t operation , i n t sampling_mode ,
i n t error_mode)
throws VisADException , RemoteException ;

30
pub l i c Data add (Data data , i n t sampling_mode , i n t error_mode)

throws VisADException , RemoteException ;

/∗∗ use Data .NEAREST_NEIGHBOR and Data .NO_ERRORS ∗/
pub l i c Data add (Data data) throws VisADException , RemoteException ;

pub l i c Data subtract (Data data , i n t sampling_mode , i n t error_mode)
throws VisADException , RemoteException ;

40 /∗∗ use Data .NEAREST_NEIGHBOR and Data .NO_ERRORS ∗/
pub l i c Data subtract (Data data) throws VisADException , RemoteException ;

/∗∗ s im i l a r methods are de f ined f o r the f o l l ow ing binary ope ra to r s :
mult iply , d iv ide , pow , max , min , atan2 , atan2Degrees and
remainder ∗/

/∗∗ gene ra l unary operat ion ; operat ion may be Data .ABS, Data .ACOS, e tc ;
these inc lude a l l unary ope ra t i on s de f ined f o r Java p r im i t i v e data
types ; new_type i s the MathType o f the r e s u l t ; sampling_mode may be

50 Data .NEAREST_NEIGHBOR or Data .WEIGHTED_AVERAGE; error_mode may be
Data .INDEPENDENT, Data .DEPENDENT or Data .NO_ERRORS ∗/
pub l i c Data unary (i n t operation , MathType new_type , i n t sampling_mode ,

33

i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ l i k e prev ious s i gna tu r e o f unary , except the r e s u l t takes
the MathType o f t h i s un l e s s the d e f au l t Units o f that MathType
c o n f l i c t with Units o f the r e su l t , in which case a g ene r i c
MathType with appropr ia te Units i s cons t ructed ∗/

60 pub l i c Data unary (i n t operation , i n t sampling_mode , i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ c lone t h i s Data ob j e c t except g ive i t new_type ∗/
pub l i c Data changeMathType (MathType new_type)
throws VisADException , RemoteException ;

pub l i c Data abs (i n t sampling_mode , i n t error_mode)
throws VisADException , RemoteException ;

70 /∗∗ use Data .NEAREST_NEIGHBOR and Data .NO_ERRORS ∗/
pub l i c Data abs () throws VisADException , RemoteException ;

pub l i c Data acos (i n t sampling_mode , i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ use Data .NEAREST_NEIGHBOR and Data .NO_ERRORS ∗/
pub l i c Data acos () throws VisADException , RemoteException ;

/∗∗ s im i l a r methods are de f ined f o r the f o l l ow ing unary ope ra to r s :
80 acosDegrees , as in , as inDegrees , atan , atanDegrees , c e i l , cos ,

cosDegrees , exp , f l o o r , log , r in t , round , s in , s inDegrees ,
sqrt , tan , tanDegrees , negate ∗/

3.2.7 Real Methods
A Real object may only be local. Binary operations may be performed between a Real
and any other Data object that does not contain Text components; such operations
are applied independently with each Real component. Generally useful Real methods
include:

Listing 3.22: The Real Methods

pub l i c f i n a l double getValue () ;

/∗∗ get double value converted to un i t ∗/
pub l i c f i n a l double getValue (Unit unit) throws VisADException ;

pub l i c Unit getUnit () ;

pub l i c ErrorEstimate getError () ;

34

3.2.8 Text Methods
Text may only be local. The only binary operation that works for Text is Data.ADD,
which is interpreted as string concatenation. No unary operations work for Text.
Generally useful Text methods include:

Listing 3.23: The text methods

pub l i c String getValue () ;

3.2.9 Tuple Methods
A Tuple object may only be local. Generally useful Tuple methods include:

Listing 3.24: The tuple methods

/∗∗ re turn number o f components ∗/
pub l i c i n t getDimension () ;

/∗∗ re turn component f o r index between 0 and getDimension () − 1 ∗/
pub l i c MathType getComponent (i n t index) throws VisADException ;

/∗∗ cons t ruc t Tuple ; used f o r con s t ruc t i ng Tuples in Spreadsheet ;
e . g . , l i n k (v i sad . Tuple . makeTuple (A2 , B1 , B2)) ∗/
pub l i c s t a t i c Tuple makeTuple (Data [] datums)

10 throws VisADException , RemoteException

3.2.10 RealTuple Methods
A RealTuple object may only be local. Generally useful RealTuple methods include:

Listing 3.25: The RealTuple methods

/∗∗ get Units o f Real components ∗/
pub l i c Unit [] getTupleUnits () ;

/∗∗ get ErrorEst imates o f Real components ∗/
pub l i c ErrorEstimate [] getErrors () throws VisADException ;

/∗∗ get CoordinateSystem ∗/
pub l i c CoordinateSystem getCoordinateSystem () ;

35

3.2.11 Function Methods
A Function object may be either local or remote, a FunctionImpl object may only be
local and a RemoteFunction object may only be remote (see Section 6 for more infor-
mation). Generally useful Function methods are listed below. Note in particular the
resample method which is invoked implicitly for many visualization and mathematical
operations on Functions and can be invoked by applications for image remapping and
a variety of similar Function operations.

Listing 3.26: The Function methods

/∗∗ get dimension o f Function domain ∗/
pub l i c i n t getDomainDimension ()
throws VisADException , RemoteException ;

/∗∗ get Units o f domain Real components ∗/
pub l i c Unit [] getDomainUnits ()
throws VisADException , RemoteException ;

/∗∗ get domain CoordinateSystem ∗/
10 pub l i c CoordinateSystem getDomainCoordinateSystem ()

throws VisADException , RemoteException ;

/∗∗ eva luate Function at domain_value , f o r 1−D domains ∗/
pub l i c Data evaluate (Real domain_value , i n t sampling_mode ,
i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ eva luate Function at domain_value , f o r 1−D domains ,
us ing Data .NEAREST_NEIGHBOR and Data .NO_ERRORS ∗/

20 pub l i c Data evaluate (Real domain_value)
throws VisADException , RemoteException ;

/∗∗ eva luate Function at domain_value ∗/
pub l i c Data evaluate (RealTuple domain_value , i n t sampling_mode ,
i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ eva luate Function at domain_value us ing
Data .NEAREST_NEIGHBOR and Data .NO_ERRORS ∗/

30 pub l i c Data evaluate (RealTuple domain_value)
throws VisADException , RemoteException ;

/∗∗ re turn a F ie ld o f Function va lues at samples in s e t ;
t h i s combines un i t convers ions , coord inate transforms ,
resampl ing and i n t e r p o l a t i o n ∗/
pub l i c Field resample (Set set , i n t sampling_mode , i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ re turn the d e r i v a t i v e o f t h i s Function with r e sp e c t to d_part ia l ;
40 d_part ia l may occur in t h i s Function ’ s domain RealTupleType , or ,

i f the domain has a CoordinateSystem , in i t s Reference
RealTupleType ; propogate e r r o r s accord ing to error_mode ∗/
pub l i c ab s t r a c t Function derivative (RealType d_partial ,
i n t error_mode) throws VisADException , RemoteException ;

36

/∗∗ re turn the d e r i v a t i v e o f t h i s Function with r e sp e c t to d_part ia l ;
s e t r e s u l t MathType to derivType ; d_part ia l may occur in t h i s
Function ’ s domain RealTupleType , or , i f the domain has a
CoordinateSystem , in i t s Reference RealTupleType ;

50 propogate e r r o r s accord ing to error_mode ∗/
pub l i c ab s t r a c t Function derivative (RealType d_partial ,
MathType derivType , i n t error_mode)
throws VisADException , RemoteException ;

/∗∗ re turn the tup l e o f d e r i v a t i v e s o f t h i s Function with r e sp e c t to
a l l RealType components o f i t s domain RealTupleType ;
propogate e r r o r s accord ing to error_mode ∗/
pub l i c ab s t r a c t Data derivative (i n t error_mode)
throws VisADException , RemoteException ;

60
/∗∗ re turn the tup l e o f d e r i v a t i v e s o f t h i s Function with r e sp e c t
to a l l RealType components o f i t s domain RealTupleType ;
s e t r e s u l t MathTypes o f tup l e components to derivType_s ;
propogate e r r o r s accord ing to error_mode ∗/
pub l i c ab s t r a c t Data derivative (MathType [] derivType_s ,
i n t error_mode) throws VisADException , RemoteException ;

/∗∗ re turn the tup l e o f d e r i v a t i v e s o f t h i s Function with r e sp e c t
to the RealTypes in d_partial_s ; the RealTypes in d_partial_s

70 may occur in t h i s Function ’ s domain RealTupleType , or , i f the
domain has a CoordinateSystem , in i t s Reference RealTupleType ;
s e t r e s u l t MathTypes o f tup l e components to derivType_s ;
propogate e r r o r s accord ing to error_mode ∗/
pub l i c ab s t r a c t Data derivative (RealTuple location ,
RealType [] d_partial_s , MathType [] derivType_s , i n t error_mode)
throws VisADException , RemoteException ;

3.2.12 Field Methods
A Field object may be either local or remote, a FieldImpl object may only be local
and a RemoteField object may only be remote (see Section 6 for more information).
Generally useful Field methods include:

Listing 3.27: The Field methods

/∗∗ s e t the va lues o f the F i e ld (at the domain Set samples)
us ing the va lues in range (the l ength o f range must
equal the l ength o f the domain Set) ;
make cop i e s o f range va lues i f copy i s t rue ∗/
pub l i c void setSamples (Data [] range , boolean copy)
throws VisADException , RemoteException ;

/∗∗ get the domain Set ∗/
pub l i c Set getDomainSet ()

10 throws VisADException , RemoteException ;

/∗∗ get the Units o f the Real components o f the domain Set ∗/
pub l i c Unit [] getDomainUnits ()
throws VisADException , RemoteException ;

37

/∗∗ get the CoordinateSystem of the domain Set ∗/
pub l i c CoordinateSystem getDomainCoordinateSystem ()
throws VisADException , RemoteException ;

20 /∗∗ get the F i e ld value at the index−th sample in the
domain Set ∗/
pub l i c Data getSample (i n t index)
throws VisADException , RemoteException ;

/∗∗ get the ’ Flat ’ components o f t h i s F i e ld ’ s range va lues
in t h e i r d e f au l t range Units (as de f ined by the range o f
the F i e ld ’ s FunctionType) ; i f the range type i s a RealType
i t i s a ’ Flat ’ component , i f the range type i s a TupleType
i t s RealType components and RealType components o f i t s

30 RealTupleType components are a l l ’ F lat ’ components ; the
return array i s dimensioned :
double [number_of_flat_components] [number_of_range_samples] ∗/
pub l i c double [] [] getValues ()
throws VisADException , RemoteException ;

/∗∗ s e t F i e ld value at the index−th sample in the
domain Set , to range ∗/
pub l i c void setSample (i n t index , Data range)
throws VisADException , RemoteException ;

40
/∗∗ s e t F i e ld value at the sample in the domain Set nea r e s t
domain , to range ∗/
pub l i c void setSample (RealTuple domain , Data range)
throws VisADException , RemoteException ;

/∗∗ re turn an Enumeration o f RealTuple va lues in domain Set ∗/
pub l i c Enumeration domainEnumeration ()
throws VisADException , RemoteException ;

50 /∗∗ re turn true i s t h i s i s a F la tF i e ld ∗/
pub l i c boolean isFlatField () ;

/∗∗ assumes the range type o f t h i s i s a Tuple and re tu rns
a F i e ld with the same domain as th i s , but whose range
samples c o n s i s t o f the s p e c i f i e d Tuple component o f the
range samples o f t h i s ; in shorthand , t h i s [] . component ∗/
pub l i c Field extract (i n t component)
throws VisADException , RemoteException ;

60 /∗∗ combine domains o f two outpost nested F i e l d s in to a s i n g l e
domain and Fie ld ; f o r examples trans form the MathType
(a −> ((b , c) −> d)) in to ((a , b , c) −> d) ∗/
pub l i c Field domainMultiply ()
throws VisADException , RemoteException ;

/∗∗ f a c t o r F i e ld domain in to domains o f two nested F i e l d s (with
f a c t o r as outer domain) ; f o r examples transform the MathType
((a , b , c) −> d) in to (a −> ((b , c) −> d)) (where f a c t o r = a) ∗/
pub l i c Field domainFactor (RealType factor)

70 throws VisADException , RemoteException ;
\ end { environment−name }

\ subsection { FieldImpl Method }
This describes a single s t a t i c method of FieldImpl :

38

\ begin { lstlisting } [
caption={[FieldImpl methods] The FieldImpl methods } ,
l a b e l=code : fieldImplMethods ,
]

80 /∗∗ resample a l l e lements o f the f i e l d s array to the domain
s e t o f f i e l d s [0] , then return a F ie ld whose range samples
are Tuples merging the correspond ing range samples from
each element o f f i e l d s ; i f the range o f f i e l d s [i] i s a
Tuple without a RangeCoordinateSystem , then each Tuple
component o f a range sample o f f i e l d s [i] becomes a
Tuple component o f a range sample o f the r e s u l t −
otherwi se a range sample o f f i e l d s [i] becomes a Tuple
component o f a range sample o f the r e s u l t ; t h i s assumes
a l l e lements o f the f i e l d s array have the same domain

90 dimension ∗/
pub l i c s t a t i c Field combine (Field [] fields)
throws VisADException , RemoteException ;

3.2.13 Application Example: Synthesizing Fields
In this example we assume that:

grid_type = ((row, column, level) -> (temperature, pressure, water_vapor))

and:

vis5d_type = (time -> grid_type)

These are the types appropriate for Vis5D data sets synthesized by the example
in Section 3.1.14. This example includes constructors for an Integer3DSet and an
Integer1DSet, which are described in detail in Section 3.5.3.3, and a constructor for
a FlatField, which is an efficient sub-class of FieldImpl described in Section 3.9. The
Integer3DSet is an integer lattice of 50 by 50 by 20 points for a Vis5D grid, and the
Integer1DSet is a sequence of hour values from 0 to 23. FlatField includes a version
of the setSamples method that takes an array of floats, in addition to the version of
setSamples inherited from FieldImpl that takes an array of Data objects. Here’s a
sample of code for synthesizing a FieldImpl appropriate for a Vis5D data set:

Listing 3.28: Synthesizing a FieldImpl appropriate for a Vis5D data set

// cons t ruc t an i n t e g e r 3−D gr id
Set grid_set = new Integer3DSet (50 , 50 , 20) ;

// cons t ruc t a sequence o f 24 hours
Set time_set = new Integer1DSet (24) ;

// cons t ruc t a Fie ldImpl f o r a time sequence o f g r i d s
FieldImpl vis5d = new FieldImpl (vis5d_type , time_set) ;

39

10 f o r (i n t i=0; i<24; i++) {
// conbst ruct a F la tF i e ld f o r the i−th time step
FlatField grid = new FlatField (grid_type , grid_set) ;

// cons t ruc t an array to hold the gr idded f i e l d va lues ;
// data [0] i s an array o f temperatures , data [1] an array
// o f pre s sure s , and data [2] an array o f water_vapors
f l o a t [] [] data = new f l o a t [3] [5 0 ∗ 50 ∗ 2 0] ;

// . . . code to s e t data va lues . . .
20

// s e t the data va lues in to the g r id
grid . setSamples (data) ;

// s e t g r id as the i−th time sample o f v i s5d
vis5d . setSample (i , grid) ;
}

3.3 Units
The Unit class defines units for Real values in terms of a user-extensible list of Base-
Units and associated physical quantities. The system-intrinsic list is:

ampere electric current
candela luminous intensity
kelvin temperature
kilogram mass
meter length
second time
mole amount of substance
radian angle

A Unit is defined by a set of BaseUnits with associated integer exponents, plus a real
coefficient and offset. For example, yard = 0.9144 x meter, fahrenheit = (1 / 1.8) x
kelvin + 459.67, and joule = kilogram x meter x second−2. Two Units are convertible
if they have the same set of BaseUnits and integer exponents, or if the exponents of
one are negatives of the exponents of the other.
Units with non-zero offsets are dangerous. For example, the conversion of fahrenheit

temperature differences to kelvin differences is not correct unless the offset is ignored.
In order to avoid this problem, arithmetic operations implicitly convert all inputs to
Units with zero offsets.

40

3.3.1 Unit Methods
Unit is abstract and serializable. A Unit object can only be local (see Section 6 for
more information). Its subclasses are all immutable. Applications do not invoke Unit
constructors explicitly. Rather they derive new Units be invoking methods of existing
Units, or they create new BaseUnits by invoking a static factory method in BaseUnit.
Generally useful Unit methods include:

Listing 3.29: The Unit methods

/∗∗ c r ea t e a new Unit by r a i s i n g t h i s (which may not inc lude
an o f f s e t) to power ∗/
pub l i c Unit pow (i n t power) throws UnitException ;

/∗∗ c r ea t e a new Unit by mu l t i p l i c a t i o n by amount ;
f o r example , Unit yard = meter . s c a l e (0 . 9144) ; ∗/
pub l i c Unit scale (double amount) throws UnitException ;

/∗∗ c r ea t e a new Unit by adding o f f s e t ;
10 f o r example , Unit c e l s i u s = ke l v i n . s h i f t (273 . 15) ; ∗/

pub l i c Unit shift (double offset) throws UnitException ;

/∗∗ c r ea t e a new Unit by mul t ip ly ing t h i s (which may not
inc lude an o f f s e t) by that ∗/
pub l i c Unit multiply (Unit that) throws UnitException ;

/∗∗ c r ea t e a new Unit by d i v i d i ng t h i s (which may not
inc lude an o f f s e t) by that ∗/
pub l i c Unit divide (Unit that) throws UnitException ;

3.3.2 SI Variables
The system intrinsic BaseUnits are defined in the SI class as follows:

BaseUnit SI.ampere;
BaseUnit SI.candela;
BaseUnit SI.kelvin;
BaseUnit SI.kilogram;
BaseUnit SI.meter;
BaseUnit SI.second;
BaseUnit SI.mole;
BaseUnit SI.radian;

3.3.3 BaseUnit Methods
Generally useful BaseUnit methods include:

41

Listing 3.30: The BaseUnit methods

/∗∗ c r ea t e a new BaseUnit with the given quantityName and
unitName ∗/
pub l i c s t a t i c BaseUnit addBaseUnit (String quantityName ,
String unitName) throws UnitException ;

/∗∗ re turn any baseUnit c reated in t h i s JVM with the given
unitName ∗/
pub l i c s t a t i c baseUnit unitNameToUnit (String unitName)

10 /∗∗ re turn any baseUnit c reated in t h i s JVM with the given
quantityName ∗/
pub l i c s t a t i c baseUnit quantityNameToUnit (String quantityName)

3.3.4 CommonUnit Variables
The CommonUnit class defines commonly used Units, including:

Listing 3.31: The CommonUnit Variables

Unit CommonUnit . degree ;
Unit CommonUnit . radian ;
Unit CommonUnit . second ;
/∗∗ a l l BaseUnits have exponent zero in d imens i on l e s s ∗/
Unit CommonUnit . dimensionless ;
/∗∗ promiscuous i s compatible with any Unit ; u s e f u l f o r constants ;
not the same as nu l l Unit , which i s only compatible with
other nu l l Units ∗/
Unit CommonUnit . promiscuous ;

3.4 CoordinateSystems
CoordinateSystem is an abstract class whose sub-classes define invertable transfor-
mations of the form Rn <—> Rn between values of various RealTupleTypes. A
CoordinateSystem always refers to its reference RealTupleType. On the other hand, a
RealTupleType might or might not refer to a default CoordinateSystem. Consequently,
a RealTupleType can be one of three kinds with respect to CoordinateSystems:

1. Reference: the RealTupleType doesn’t refer to a default CoordinateSystem but
a CoordinateSystem refers to the RealTupleType.

2. Equivalent: the RealTupleType refers to a default CoordinateSystem and, thus,
refers indirectly to a reference RealTupleType.

3. Uninvolved: the RealTupleType neither refers to a default CoordinateSystem
nor is referred to by a CoordinateSystem.

42

Thus CoordinateSystems define equivalence classes of those RealTupleTypes with
the same reference. For example, (polar_stereographic_row, polar_sterographic_column),
(lambert_conformal_row, lambert_conformal_column) and other map projections
could form an equivalence class relative to, and including, the Reference (latitude,
longitude). Each of the map projections would include a default CoordinateSystem
that defined its mathematical transformation between (row, column) and (latitude,
longitude).
The default CoordinateSystem defined by a RealTupleType can be over-ridden for

RealTuple values of that type, in order to support data-dependent CoordinateSystems.
For example, meteorologists use (latitude, longitude, pressure) as a CoordinateSystem
with Reference (latitude, longitude, altitude), where the mathematical transformation
can vary depending on the vertical distribution of pressures. A default CoordinateSys-
tem can only be over-ridden by a CoordinateSystem with the same Reference.

3.4.1 CoordinateSystem Constructors
CoordinateSystem is abstract and serializable. A CoordinateSystem object can only
be local (see Section 6 for more information). Applications generally do not invoke
CoordinateSystem methods, but they construct new CoordinateSystem objects and
define new CoordinateSystem subclasses.
Note that care should be taken to make sure that:

1. The order of RealType components in a reference RealTupleType is consistent
with the computations of the toReference and fromReference methods.

2. The Units of the RealType components in a reference RealTupleType are con-
sistent with the values assumed by the toReference and fromReference methods.

3. The order of RealType components of a RealTupleType with a CoordinateSys-
tem is consistent with the computations of the toReference and fromReference
methods.

The constructor for the abstract CoordinateSystem class is:

Listing 3.32: The Abstract CoordinateSystem Constructor

/∗∗ user−de f ined sub c l a s s e s must supply r e f e r e n c e and un i t s ∗/
pub l i c CoordinateSystem (RealTupleType reference , Unit [] units)

throws VisADException ;

Constructors for specific CoordinateSystems included with VisAD include:

43

Listing 3.33: Some concrete CoordinateSystem Constructors

/∗∗ cons t ruc t a CoordinateSystem f o r (l a t i t ude , long i tude ,
rad iu s) r e l a t i v e to a 3−D Cartes ian r e f e r e n c e ;
t h i s con s t ruc to r s upp l i e s un i t s =
{CommonUnit . Degree , CommonUnit . Degree , nu l l } to the super
const ructor , in order to ensure Unit c ompa t i b i l i t y with i t s
use o f t r i gonomet r i c f unc t i on s ∗/
pub l i c SphericalCoordinateSystem (RealTupleType reference)

throws VisADException ;

10 /∗∗ cons t ruc t a CoordinateSystem f o r (long i tude , rad iu s)
r e l a t i v e to a 2−D Cartes ian r e f e r e n c e ;
t h i s con s t ruc to r s upp l i e s un i t s = {CommonUnit . Degree , nu l l }
to the super const ructor , in order to ensure Unit
c ompat i b i l i t y with i t s use o f t r i gonomet r i c f unc t i on s ∗/
pub l i c PolarCoordinateSystem (RealTupleType reference)

throws VisADException ;

/∗∗ cons t ruc t a CoordinateSystem that whose trans forms i nv e r t
the trans forms o f i nv e r s e (i . e . , toRe fe rence and

20 fromReference are switched) ; f o r example , t h i s could be
used to d e f i n e Cartes ian coo rd ina t e s r e l a t i v e to a
r e f e r n c e in s ph e r i c a l c oo rd ina t e s ∗/
pub l i c InverseCoordinateSystem (RealTupleType reference , CoordinateSystem ←↩

inverse)
throws VisADException ;

/∗∗ cons t ruc t a CoordinateSystem f o r g r id coo rd ina t e s (e . g . ,
(row , column , l e v e l) in 3−D) r e l a t i v e to the value space
o f s e t ; f o r example , i f s a t e l l i t e p i x e l l o c a t i o n s are
de f ined by e x p l i c i t l a t i t u d e s and long i tude , these could

30 be used to cons t ruc t a Gridded2DSet which could then be
used to cons t ruc t a GridCoordinateSystem f o r (ImageLine ,
ImageElement) coo rd ina t e s r e l a t i v e to r e f e r e n c e coo rd ina t e s
(Latitude , Longitude) ∗/
pub l i c GridCoordinateSystem (GriddedSet set)

throws VisADException ;

3.4.2 CoordinateSystem Methods
Extensions of CoordinateSystem must implement the following methods:

Listing 3.34: The CoordinateSystem methods

/∗∗ convert RealTuple va lues to Reference coo rd ina t e s ;
f o r e f f i c i e n c y , input and output va lues are passed as
double [] [] a r rays ra the r than RealTuple [] a r rays ; the
array indexes are :
double [tuple_dimension] [number_of_tuples] ∗/
pub l i c double [] [] toReference (double [] [] tuples)

throws VisADException ;

/∗∗ convert RealTuple va lues from Reference coo rd ina t e s ∗/
10 pub l i c double [] [] fromReference (double [] [] tuples)

throws VisADException ;

44

The following methods are implemented in CoordinateSystem in terms of the above
methods, but for efficiency’s sake extensions of CoordinateSystem may override those
with direct implementations:

Listing 3.35: The methods, a concrete CoordinateSystem class may override

pub l i c f l o a t [] [] toReference (f l o a t [] [] tuples)
throws VisADException ;

pub l i c f l o a t [] [] fromReference (f l o a t [] [] tuples)
throws VisADException ;

3.5 Sets
A Field object approximates a function by interpolating its values at a finite subset
of its domain [3]. A Field object includes a Set object that defines the finite sampling
of the function’s domain. This Set object also defines the CoordinateSystem of the
Field’s domain and the Units of the domain’s RealType components. The Set class
has many sub-classes for different ways of defining finite subsets of the Set’s domain
Rn (n is called the domain dimension of the Set). A partial Set class hierarchy is:

Set
SimpleSet

DoubleSet
FloatSet
SampledSet

ProductSet
UnionSet
GriddedSet

LinearNDSet
IntegerNDSet

Gridded1DSet
Linear1DSet

Integer1DSet
Gridded1DDoubleSet

Gridded2DSet
Linear2DSet

LinearLatLonSet
Integer2DSet

Gridded2DDoubleSet
Gridded3DSet

45

Linear3DSet
Integer3DSet

Gridded3DDoubleSet
IrregularSet

Irregular1DSet
Irregular2DSet
Irregular3DSet

A SimpleSet is embedded on a sub-manifold of dimension m in Rn (m is called the
manifold dimension of the Set). A DoubleSet with domain dimension n is just the large
but finite set of values in Rn representable by n IEEE double precision floating point
values. Similarly for FloatSet and single precision. The SampledSet class implements
some common methods for its subclasses. The samples of a GriddedSet are organized
in an m-dimensional grid. For a LinearSet this grid is aligned to the axes of the domain
Rn and for an IntegerSet the grid points form an integer lattice based at the origin.
The samples of an IrregularSet are not organized. ProductSets and UnionSets allow
Sets to be defined as products and unions of other Sets.
Note that Set is a sub-class of Data, so Sets are full-fledged Data objects in addition

to being a form of metadata for Fields. For example, a set of map boundaries would
be a Set with domain dimension n = 2 and manifold dimension m = 1.

Attention 1 (Possible class name conflict) Note also that there is a Set class
in the java.util package as of JDK 1.2. Thus applications should avoid combining
import visad.*; with import java.util.*;.

3.5.1 Defining Interpolation Algorithms by Extending the Set
Class

The resample method of the Field class is the workhorse of the system. It takes a
Set as an argument and returns a new Field containing values of the original Field
sampled at the Set locations. It also does any necessary Unit conversions and Coor-
dinateSystem transformations. The resample method is invoked implicitly whenever
needed for mathematical and visualization operations involving Fields. The resam-
ple method includes options to interpolate Field values by either nearest neighbor or
weighted average. Any degree polynomial interpolation, single stage Barnes and Cress-
man analyses, and a wide variety of other interpolation schemes can be expressed as
weighted averages. Fields get weights from the valueToInterp method of SimpleSet.
Thus developers may implement new interpolation algorithms by extending the Set
class.

46

Implementation of interpolation methods not consistent with weighted average would
require extensions of Field and FlatField. Nearest neighbor resampling uses the val-
ueToIndex method of Set.
The getWedge method of SimpleSet is important for the efficiency of Field resam-

pling and interpolation. The samples of one Set are passed to the valueToInterp and
valueToIndex of another set in an order defined the first Set’s getWedge method. Sets
use getWedge to define a spatially coherent order of their samples. It is important
that developers who extend SimpleSet try to define spatially coherent orders in their
implementations of getWedge.
Note that valueToInterp and valueToIndex generally throw an Exception for any

Set whose manifold dimension is less than its domain dimension. Thus the resample
method does not work for Fields whose domain Sets have manifold dimension less than
their domain dimension. In order to resample a Field X over a domain of dimension
N with manifold dimension M < N, applications must explicitly copy values of X to
another Field Y whose domain has dimension M and is a parameterization of the sub-
manifold containing the samples of X. For example, if N = 3 and M = 2, then the
samples of X lie on a 2-D surface embedded in a 3-D space, and the domain of Y
should be a parameterization of this surface, with samples locations corresponding to
X’s sample locations on the surface.

3.5.2 The Delaunay Class for Irregular Sets
The topology of IrregularSets is recorded, and in some cases computed, in the Delaunay
classes, which form the following hierarchy:

Delaunay
DelaunayClarkson
DelaunayWatson
DelaunayFast
DelaunayCustom

The DelaunayClarkson class computes Delaunay triangulations in any dimension
between 2 and 8 using Ken Clarkson’s algorithm. DelaunayCustom constructors accept
sampling topologies from applications. The DelaunayWatson class computes Delaunay
triangulations in 2 or 3 dimensions using David Watson’s algorithm. The DelaunayFast
class computes non-Delaunay triangulations quickly.
Note that any computation of Delaunay or approximate Delaunay topology is ex-

tremely slow and apt to exceed available memory for large Sets. Hence, where an
irregular topology is known to the application, we strongly recommend that the topol-
ogy be supplied by the application through the DelaunayCustom constructor.

47

3.5.3 Set Constructors
Set is a subclass of DataImpl. A Set object may only be local. The Set classes include
the following constructors.

DoubleSet and FloatSet Constructors

These are the finite but very large sets of values representable with N IEEE floats
or doubles. Because of their size, they may not be used as Field domains. They are
primarily used (with N = 1) for FlatField range values, where they cause range values
to be stored in IEEE floats or doubles.

Listing 3.36: The DoubleSet and FloatSet constructors

/∗∗ the s e t o f va lues r ep r e s en t ab l e by N doubles ;
type must be a RealType , a RealTupleType or a SetType ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ;
a DoubleSet may not be used as a F i e ld domain ∗/
pub l i c DoubleSet (MathType type , CoordinateSystem coordinate_system ,
Unit [] units) throws VisADException ;

/∗∗ the s e t o f va lues r ep r e s en t ab l e by N f l o a t s ;
10 type must be a RealType , a RealTupleType or a SetType ;

coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ;
a FloatSet may not be used as a F i e ld domain ∗/
pub l i c FloatSet (MathType type , CoordinateSystem coordinate_system ,
Unit [] units) throws VisADException ;

LinearSet Constructors

LinearSet is an interface implemented by Linear1DSet, Linear2DSet, Linear3DSet and
LinearNDSet. Linear1DSets are finite arithmetic progressions of values. Higher di-
mensional LinearSets are product sets of Linear1DSets. All LinearSets have man-
ifold dimension equal to their domain dimension, although any of the component
Linear1DSets may consist of a single sample (in this case, the valueToIndex and val-
ueToInterp methods will throw an Exception).
Linear1DSet, Linear2DSet, Linear3DSet are redundant with LinearNDSet but have

more efficient implementations.
The samples of a LinearSet are in raster order, with component values for the first

dimension changing fastest and component values for the last dimension changing
slowest (this is the same as the ordering of elements in a multi- dimensional Fortran
array). For example, given a Linear2DSet with domain type (X, Y) that is a product
of six X samples and five Y samples, the 2-D samples are ordered as:

48

Y (second) component

X 0 6 12 18 24
1 7 13 19 25

(first) 2 8 14 20 26
3 9 15 21 27

component 4 10 16 22 28
5 11 17 23 29

LinearSets extend GriddedSets, described in Section 3.5.3.3. GriddedSets have rect-
angular topology while LinearSets have rectangular topology and geometry.

Listing 3.37: The LinearSet Constructors

/∗∗ an ar i thmet i c p rog r e s s i on o f l ength va lues between f i r s t and l a s t ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Linear1DSet (MathType type ,
double first , double last , i n t length ,
CoordinateSystem coordinate_system , Unit [] units ,
ErrorEstimate [] errors) throws VisADException ;

/∗∗ a 1−D ar i thmet i c p rog r e s s i on with nu l l e r r o r s and gene r i c type ∗/
10 pub l i c Linear1DSet (double first , double last , i n t length)

throws VisADException ;

/∗∗ a 2−D cro s s product o f a r i thmet i c p r og r e s s i on s ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Linear2DSet (MathType type ,
double first1 , double last1 , i n t length1 ,
double first2 , double last2 , i n t length2 ,
CoordinateSystem coordinate_system , Unit [] units ,

20 ErrorEstimate [] errors) throws VisADException ;

/∗∗ a 2−D cro s s product o f a r i thmet i c p r og r e s s i on s with
nu l l e r r o r s and gene r i c type ∗/
pub l i c Linear2DSet (double first1 , double last1 , i n t length1 ,
double first2 , double last2 , i n t length2)
throws VisADException ;

/∗∗ a 3−D cro s s product o f a r i thmet i c p r og r e s s i on s ;
coordinate_system and un i t s must be compatible with d e f a u l t s

30 f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Linear3DSet (MathType type ,
double first1 , double last1 , i n t length1 ,
double first2 , double last2 , i n t length2 ,
double first3 , double last3 , i n t length3 ,
CoordinateSystem coordinate_system , Unit [] units ,
ErrorEstimate [] errors) throws VisADException ;

/∗∗ a 3−D cro s s product o f a r i thmet i c p r og r e s s i on s with
nu l l e r r o r s and gene r i c type ∗/

40 pub l i c Linear3DSet (double first1 , double last1 , i n t length1 ,
double first2 , double last2 , i n t length2 ,

49

double first3 , double last3 , i n t length3)
throws VisADException ;

/∗∗ a 2−D cro s s product o f a r i thmet i c p r og r e s s i on s that whose ea s t
and west edges may be jo in ed (f o r i n t e r p o l a t i o n purposes) ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c LinearLatLonSet (MathType type ,

50 double first1 , double last1 , i n t length1 ,
double first2 , double last2 , i n t length2 ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 2−D cro s s product o f a r i thmet i c p r og r e s s i on s that whose ea s t
and west edges may be jo in ed (f o r i n t e r p o l a t i o n purposes) , with
nu l l e r r o r s , CoordinateSystem and Units are d e f a u l t s from type ∗/
pub l i c LinearLatLonSet (MathType type ,

60 double first1 , double last1 , i n t length1 ,
double first2 , double last2 , i n t length2)
throws VisADException ;

/∗∗ cons t ruc t an N−dimens iona l s e t as the product o f N Linear1DSets ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c LinearNDSet (MathType type , Linear1DSet [] sets ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)

70 throws VisADException ;

/∗∗ cons t ruc t an N−dimens iona l s e t as the product o f N Linear1DSets ,
with nu l l e r r o r s , CoordinateSystem and Units are d e f a u l t s from
type ∗/
pub l i c LinearNDSet (MathType type , Linear1DSet [] sets)
throws VisADException ;

/∗∗ cons t ruc t an N−dimens iona l s e t as the product o f N ar i thmet i c
p r o g r e s s i on s ; coordinate_system and un i t s must be compatible

80 with d e f a u l t s f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c LinearNDSet (MathType type , double [] firsts , double [] lasts ,
i n t [] lengths , CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ cons t ruc t an N−dimens iona l s e t as the product o f N ar i thmet i c
p rog r e s s i on s , with nu l l e r r o r s , CoordinateSystem and Units are
d e f a u l t s from type ∗/
pub l i c LinearNDSet (MathType type , double [] firsts , double [] lasts ,

90 i n t [] lengths) throws VisADException ;

IntegerSet Constructors

IntegerSet is an interface implemented by Integer1DSet, Integer2DSet, Integer3DSet
and IntegerNDSet. These classes are simple extensions of the corresponding Lin-
earSet classes that constrain arithmetic progressions to sequences of consecutive in-
tegers based at zero. Integer1DSet, Integer2DSet, Integer3DSet are redundant with

50

IntegerNDSet but have more efficient implementations.
IntegerSets are useful as the domains of Fields that are really just simple 1-D, 2-D,

3-D or N-D arrays of values.

Listing 3.38: The IntegerSet constructors

/∗∗ cons t ruc t a 1−dimens iona l s e t with va lues {0 , 1 , . . . , lengthX−1};
coordinate_system and un i t s must be compatible with d e f a u l t s f o r
type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Integer1DSet (MathType type , i n t lengthX ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 1−D se t with nu l l e r r o r s and gene r i c type ∗/
10 pub l i c Integer1DSet (i n t lengthX)

throws VisADException ;

/∗∗ cons t ruc t a 2−dimens iona l s e t with va lues
{0 , 1 , . . . , lengthX−1} x {0 , 1 , . . . , lengthY−1};
coordinate_system and un i t s must be compatible with d e f a u l t s f o r
type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Integer2DSet (MathType type , i n t lengthX , lengthY ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)

20 throws VisADException ;

/∗∗ a 2−D se t with nu l l e r r o r s and gene r i c type ∗/
pub l i c Integer2DSet (i n t lengthX , lengthY)
throws VisADException ;

/∗∗ cons t ruc t a 3−dimens iona l s e t with va lues {0 , 1 , . . . , lengthX−1}
x {0 , 1 , . . . , lengthY−1} x {0 , 1 , . . . , lengthZ −1};
coordinate_system and un i t s must be compatible with d e f a u l t s f o r
type , or may be nu l l ; e r r o r s may be nu l l ∗/

30 pub l i c Integer3DSet (MathType type , i n t lengthX , lengthY , lengthZ ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 3−D se t with nu l l e r r o r s and gene r i c type ∗/
pub l i c Integer3DSet (i n t lengthX , lengthY , lengthZ)
throws VisADException ;

/∗∗ cons t ruc t an N−dimens iona l s e t with va lues in the c r o s s product
40 o f {0 , 1 , . . . , l eng th s [i]−1}

f o r i =0, . . . , l eng th s [l eng th s . length −1] ;
coordinate_system and un i t s must be compatible with d e f a u l t s f o r
type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c IntegerNDSet (MathType type , i n t [] lengths ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ an N−D se t with nu l l e r r o r s and gene r i c type ∗/
50 pub l i c IntegerNDSet (i n t [] lengths)

throws VisADException ;

51

GriddedSet Constructors

GriddedSets are N-dimensional sets with rectangular topologies but not necessarily
rectangular geometries. GriddedSet implements the general N-dimensional case (al-
though that implementation is not complete in the initial release) and is extended by
Gridded1DSet, Gridded2DSet and Gridded3DSet, which are complete.
GriddedSets may have manifold dimension less than (or equal to) their domain di-

mension. A GriddedSet with domain dimension N and manifold dimension M defines
an M-dimensional grid of samples embedded in an N-dimensional space. In the Grid-
dedSet constructors, the arguments lengthX, lengthY and lengthZ define the numbers
of samples along each dimension of the grid (so the number of length arguments de-
fines the manifold dimension), and the samples array argument defines the locations of
grid points in N-dimensional domain space. The samples array has type float[][] with
dimensions float[N][number_of_samples]. Thus the i-th point in the grid is located
at:

(samples[0][i], samples[1][i], ..., samples[N-1][i]).

The samples are in raster order, with the first grid dimension changing fastest and
the last grid dimension changing slowest. That is, the first lengthX samples form the
first ’column’ of the grid, the first (lengthX * lengthY) samples for the first sub-plane
of the grid, and so on.
If the manifold dimension is less than the domain dimension or any of the grid

sizes (i.e., lengthX, lengthY or lengthZ) is 1, then the valueToIndex and valueToInt-
erp methods will throw an Exception. If the manifold dimension equals the domain
dimension and all of the grid sizes is greater than 1, then the GriddedSet constructor
will perform numerical checks on the samples array to ensure that form a valid grid
(e.g., to ensure that they are sorted in the 1-D case).

Listing 3.39: The GriddedSet constructors

/∗∗ a 1−D sor ted sequence with no r egu l a r i n t e r v a l ; samples array
i s organ ized f l o a t [1] [number_of_samples] where lengthX =
number_of_samples ; samples must be so r t ed (e i t h e r i n c r e a s i n g
or dec r ea s ing) ; coordinate_system and un i t s must be compatible
with d e f a u l t s f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Gridded1DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

10
/∗∗ a 1−D sequence with no r egu l a r i n t e r v a l with nu l l e r r o r s ,
CoordinateSystem and Units are d e f a u l t s from type ∗/
pub l i c Gridded1DSet (MathType type , f l o a t [] [] samples , i n t lengthX)
throws VisADException ;

/∗∗ a 1−D sor ted sequence with no r egu l a r i n t e r v a l ; samples array

52

i s o rgan ized double [1] [number_of_samples] where lengthX =
number_of_samples ; samples must be so r t ed (e i t h e r i n c r e a s i n g
or dec r ea s ing) ; coordinate_system and un i t s must be compatible

20 with d e f a u l t s f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
Gridded1DDoubleSet is useful f o r sequences of DataTime values
represented as double precision seconds ∗/
pub l i c Gridded1DDoubleSet (MathType type , double [] [] samples ,
i n t lengthX , CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 1−D sequence with no r egu l a r i n t e r v a l with nu l l e r r o r s ,
CoordinateSystem and Units are d e f a u l t s from type ;

30 Gridded1DDoubleSet i s u s e f u l f o r sequences o f DataTime va lues
r epre s ented as double p r e c i s i o n seconds ∗/
pub l i c Gridded1DDoubleSet (MathType type , double [] [] samples ,
i n t lengthX)
throws VisADException ;

/∗∗ a 2−D se t whose topology i s a lengthX x lengthY gr id ;
samples array i s organ ized f l o a t [2] [number_of_samples] where
lengthX ∗ lengthY = number_of_samples ; samples must form a
non−degenerate 2−D gr id (no bow−t i e−shaped gr id boxes) ; the

40 X component i n c r e a s e s f a s t e s t in the second index o f samples ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Gridded2DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
i n t lengthY , CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 2−D se t whose topology i s a lengthX x lengthY grid , with
nu l l e r r o r s , CoordinateSystem and Units are d e f a u l t s from type ∗/

50 pub l i c Gridded2DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
i n t lengthY) throws VisADException ;

/∗∗ a 2−D se t with manifo ld dimension = 1 ; samples array i s
organ ized f l o a t [2] [number_of_samples] where lengthX =
number_of_samples ; no geometr ic c on s t r a i n t on samples ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Gridded2DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
CoordinateSystem coordinate_system ,

60 Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 2−D se t with manifo ld dimension = 1 , with nu l l e r r o r s ,
CoordinateSystem and Units are d e f a u l t s from type ∗/
pub l i c Gridded2DSet (MathType type , f l o a t [] [] samples , i n t lengthX)
throws VisADException ;

/∗∗ a 3−D se t whose topology i s a lengthX x lengthY x lengthZ
gr id ; samples array i s organ ized f l o a t [3] [number_of_samples]

70 where lengthX ∗ lengthY ∗ lengthZ = number_of_samples ;
samples must form a non−degenerate 3−D gr id (no bow−t i e−shaped
gr id cubes) ; the X component i n c r e a s e s f a s t e s t and the Z
component s l owes t in the second index o f samples ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Gridded3DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
i n t lengthY , i n t lengthZ ,

53

CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)

80 throws VisADException ;

/∗∗ a 3−D se t whose topology i s a lengthX x lengthY x lengthZ
gr id , with nu l l e r r o r s , CoordinateSystem and Units are
d e f a u l t s from type ∗/
pub l i c Gridded3DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
i n t lengthY , i n t lengthZ) throws VisADException ;

/∗∗ a 3−D se t with manifo ld dimension = 2 ; samples array i s
organ ized f l o a t [3] [number_of_samples] where lengthX ∗ lengthY

90 = number_of_samples ; no geometr ic c on s t r a i n t on samples ; the
X component i n c r e a s e s f a s t e s t in the second index o f samples ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Gridded3DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
i n t lengthY , CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 3−D se t with manifo ld dimension = 2 , with nu l l e r r o r s ,
100 CoordinateSystem and Units are d e f a u l t s from type ∗/

pub l i c Gridded3DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,
i n t lengthY) throws VisADException ;

/∗∗ a 3−D se t with manifo ld dimension = 1 ; samples array i s
organ ized f l o a t [3] [number_of_samples] where lengthX =
number_of_samples ; no geometr ic c on s t r a i n t on samples ;
coordinate_system and un i t s must be compatible with d e f a u l t s
f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Gridded3DSet (MathType type , f l o a t [] [] samples , i n t lengthX ,

110 CoordinateSystem coordinate_system , Unit [] units ,
ErrorEstimate [] errors)
throws VisADException ;

/∗∗ a 3−D se t with manifo ld dimension = 1 , with nu l l e r r o r s ,
CoordinateSystem and Units are d e f a u l t s from type ∗/
pub l i c Gridded3DSet (MathType type , f l o a t [] [] samples , i n t lengthX)
throws VisADException ;

IrregularSet Constructors

IrregularSets are N-dimensional sets with irregular topologies consisting of lists of
(N+1)-gons (i.e., line segments in 1 dimension, triangles in 2 dimensions, tetrahedra
in 3 dimensions, etc). IrregularSet implements the general N-dimensional case (al-
though that implementation is not complete in the initial release) and is extended by
Irregular1DSet, Irregular2DSet and Irregular3DSet, which are complete.
The samples array argument to the IrregularSet constructors defines the locations

of sample points in N-dimensional domain space. The samples array has type float[][]
with dimensions float[N][number_of_samples]. Thus the i-th sample point is located
at:

54

(samples[0][i], samples[1][i], ..., samples[N-1][i]).

IrregularSets may have manifold dimension less than or equal to their domain di-
mension. If the manifold dimension is less than the domain dimension, then the
valueToIndex and valueToInterp methods throw Exceptions.
In 1 dimension the topology is constructed merely by sorting the samples. In higher

dimensions the topology may be constructed by a Delaunay triangulation or may be
specified in the constructor (using the DelaunayCustom class). See Section 3.5.5 for
more information about Delaunay classes.

Listing 3.40: The IrregularSet constructors

/∗∗ a 1−D i r r e g u l a r s e t ; samples array i s organ ized
f l o a t [1] [number_of_samples] ; samples need not be
so r t ed − the cons t ruc to r s o r t s samples to d e f i n e
a 1−D " t r i a n gu l a t i o n " ;
coordinate_system and un i t s must be compatible with
d e f a u l t s f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Irregular1DSet (MathType type , f l o a t [] [] samples ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)

10 throws VisADException ;

/∗∗ a 1−D i r r e g u l a r s e t with nu l l e r r o r s , CoordinateSystem
and Units are d e f a u l t s from type ∗/
pub l i c Irregular1DSet (MathType type , f l o a t [] [] samples)
throws VisADException ;

/∗∗ a 2−D i r r e g u l a r s e t ; samples array i s organ ized
f l o a t [2] [number_of_samples] ; no geometr ic c on s t r a i n t on
samples ; i f de lan i s non−nu l l i t d e f i n e s the topology o f

20 samples (which must have manifo ld dimension 2) , e l s e the
cons t ruc to r computes a topology with manifo ld dimension 2 ;
note that Gridded2DSet can be used f o r an i r r e g u l a r s e t
with domain dimension 2 and manifo ld dimension 1 ;
coordinate_system and un i t s must be compatible with
d e f a u l t s f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Irregular2DSet (MathType type , f l o a t [] [] samples ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors ,
Delaunay delan)

30 throws VisADException ;

/∗∗ a 2−D i r r e g u l a r s e t with nu l l e r r o r s , CoordinateSystem
and Units are d e f a u l t s from type ; topology i s computed
by the cons t ruc to r ∗/
pub l i c Irregular2DSet (MathType type , f l o a t [] [] samples)
throws VisADException ;

/∗∗ a 3−D i r r e g u l a r s e t ; samples array i s organ ized
f l o a t [3] [number_of_samples] ; no geometr ic c on s t r a i n t on

40 samples ; i f de lan i s non−nu l l i t d e f i n e s the topology o f
samples (which may have manifo ld dimension 2 or 3) , e l s e
the cons t ruc to r computes a topology with manifo ld dimension
3 ; note that Gridded3DSet can be used f o r an i r r e g u l a r s e t
with domain dimension 3 and manifo ld dimension 1 ;

55

coordinate_system and un i t s must be compatible with
d e f a u l t s f o r type , or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c Irregular3DSet (MathType type , f l o a t [] [] samples ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors ,

50 Delaunay delan)
throws VisADException ;

/∗∗ a 3−D i r r e g u l a r s e t with nu l l e r r o r s , CoordinateSystem
and Units are d e f a u l t s from type ; topology i s computed
by the cons t ruc to r ∗/
pub l i c Irregular3DSet (MathType type , f l o a t [] [] samples)
throws VisADException ;

ProductSet and UnionSet Constructors

ProductSets are SampledSets that are defined as products of other SampledSets (called
the ProductSet’s factor sets). The domain dimension of a ProductSet is the sum of
the domain dimensions of its factors and similarly its manifold dimension is the sum
of the manifold dimensions of its factors. The order of samples in a ProductSet is the
rasterization of the orders of samples of its factors. As the index of the ProductSet
increases, the index of the first factor varies fastest and the index of the last factor
varies slowest.
UnionSets are SampledSets that are defined as unions of other SampledSets. All

the sets in the union must have the same domain dimension and they must all have
the same manifold dimension. Note that the valueToInterp method is not imple-
mented for UnionSets but the valueToIndex method is. Thus if a UnionSet is the
domain set of a Field, arithmetic operations involving the Field must specify the
Data.NEAREST_NEIGHBOR resampling mode rather than Data.WEIGHTED_AVERAGE.
The order of samples in a UnionSet is the serialization of the orders of samples of its
components. As the index of the UnionSet increases, the samples of the first com-
ponent are enumerated first and the samples of the last component are enumerated
last.

Listing 3.41: The ProductSet and UnionSet constructors

/∗∗ c r ea t e the product o f the s e t s array ; coordinate_system
and un i t s must be compatible with d e f a u l t s f o r type ,
or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c ProductSet (MathType type , SampledSet [] sets ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)
throws VisADException ;

/∗∗ c r ea t e the product o f the s e t s array , with nu l l e r r o r s ,
10 CoordinateSystem and Units are d e f a u l t s from type ∗/

pub l i c ProductSet (MathType type , SampledSet [] sets)
throws VisADException ;

56

/∗∗ c r ea t e the union o f the s e t s array ; coordinate_system
and un i t s must be compatible with d e f a u l t s f o r type ,
or may be nu l l ; e r r o r s may be nu l l ∗/
pub l i c UnionSet (MathType type , SampledSet [] sets ,
CoordinateSystem coordinate_system ,
Unit [] units , ErrorEstimate [] errors)

20 throws VisADException ;

/∗∗ c r ea t e the union o f the s e t s array , with nu l l e r r o r s ,
CoordinateSystem and Units are d e f a u l t s from type ∗/
pub l i c UnionSet (MathType type , SampledSet [] sets)
throws VisADException ;

3.5.4 Set Methods
Applications generally do not invoke Set methods, but they construct new Set objects
and may define new Set subclasses. New Set subclasses must either implement or
inherit these methods:

Listing 3.42: The Set methods

/∗∗ re turn an enumeration o f sample i n d i c e s in a s p a t i a l l y
coherent order ; t h i s i s u s e f u l f o r e f f i c i e n c y ∗/
pub l i c i n t [] getWedge () ;

/∗∗ re turn an enumeration o f sample va lues in index order
(i . e . , not in getWedge order) ; the re turn array i s
organ ized as f l o a t [domain_dimension] [number_of_samples] ∗/
pub l i c f l o a t [] [] getSamples () throws VisADException ;

10 /∗∗ convert an array o f i n d i c e s to an array o f sample va lues ;
the return array i s organ ized as
f l o a t [domain_dimension] [i n d i c e s . l ength] ∗/
pub l i c f l o a t [] [] indexToValue (i n t [] indices) throws VisADException ;

/∗∗ convert an array o f va lues to an array o f i n d i c e s o f the nea r e s t
samples ; the va lues array i s organ ized as
f l o a t [domain_dimension] [number_of_values] ∗/
pub l i c i n t [] valueToIndex (f l o a t [] [] values) throws VisADException ;

20 /∗∗ convert an array o f i n d i c e s to an array o f double p r e c i s i o n
sample va lues ; t h i s p r e c i s i o n i s cu r r en t l y only meaningful
f o r Linear1DSet and Gridded1DDoubleSet where i t i s intended
to r ep r e s en t date / time va lues as double p r e c i s i o n seconds ;
the return array i s organ ized as
double [domain_dimension] [i n d i c e s . l ength] ∗/
pub l i c double [] [] indexToDouble (i n t [] indices) throws VisADException ;

/∗∗ convert an array o f double p r e c i s i o n va lues to an array o f
i n d i c e s o f the nea r e s t samples ; t h i s p r e c i s i o n i s cu r r en t l y

30 only mean ing fu l fu l f o r Linear1DSet and Gridded1DDoubleSet
where i t i s intended to r ep r e s en t date / time va lues as double
p r e c i s i o n seconds ; the va lues array i s organ ized as

57

double [domain_dimension] [number_of_values] ∗/
pub l i c i n t [] doubleToIndex (double [] [] values) throws VisADException ;

3.5.5 SimpleSet Methods

Listing 3.43: The SimpleSet methods

/∗∗ convert an array o f va lues to ar rays o f i n d i c e s and weights f o r
those ind i c e s , appropr ia te f o r i n t e r p o l a t i o n ; the va lues array i s
organ ized as f l o a t [domain_dimension] [number_of_values] ; i n d i c e s
and weights must be passed in as i n t [number_of_values] [] and
f l o a t [number_of_values] [] ; on return , quant i ty (va lues [.] [i])
can be est imated as the sum over j o f
weights [i] [j] ∗ quant i ty (sample at i n d i c e s [i] [j]) ;
no es t imate p o s s i b l e i f i n d i c e s [i] and weights [i] are nu l l ∗/
pub l i c void valueToInterp (f l o a t [] [] values , i n t [] [] indices ,

10 f l o a t [] [] weights) throws VisADException ;

3.5.6 Delaunay Constructors
The Delaunay class is serializable. A Delaunay object may only be local. The Delaunay
classes include the following useful constructor:

Listing 3.44: The Delaunay constructors

/∗∗ the DelaunayCustom cons t ruc to r a l l ows app l i c a t i o n s to d e f i n e
sampling t opo l o g i e s ; the samples array i s organ ized as
f l o a t [domain_dimension] [number_of_samples] and the t r i s a r rays
i s organ ized as i n t [number_of_tris] [manifold_dimension + 1] ;
each " t r i " i s a l i s t o f sample ind i c e s , and i s a t r i ang l e ,
tetrahedron , e t c depending on manifo ld dimension ∗/
pub l i c DelaunayCustom (f l o a t [] [] samples , i n t [] [] tris)
throws VisADException ;

3.6 ErrorEstimates
The ErrorEstimate class contains an estimate of the variance of error associated with a
value or a set of values. ErrorEstimates are included with individual Real values, and
with each RealType component in the range of FlatFields. For example, one range
component of a FlatField may consist of all temperature values in a model output
grid, and these would be associated with a single average ErrorEstimate (see Section
3.9).

58

Data operations include options to propagate ErrorEstimates assuming that errors
are distributed either independently or dependently, as well as an option to not prop-
agate ErrorEstimates.
The VisAD ErrorEstimates are not a substitute for a detailed error analysis, but

can provide a quick estimate of error magnitude and the possible need for detailed
analysis.

3.6.1 ErrorEstimate Constructors
The ErrorEstimate class is serializable. An ErrorEstimate object may only be local.
The ErrorEstimate class include the following constructors:

Listing 3.45: The ErrorEstimate constructors

/∗∗ cons t ruc t an e r r o r d i s t r i b u t i o n o f number va lues with
given mean and var iance , in Unit un i t ∗/
pub l i c ErrorEstimate (double variance , double mean ,
long number , Unit unit) ;

/∗∗ cons t ruc t an e r r o r d i s t r i b u t i o n o f 1 value with
given mean and var iance , in Unit un i t ∗/
pub l i c ErrorEstimate (double mean , double variance , Unit unit) ;

3.7 AuditTrails
The AuditTrail class contains an ordered sequence of text strings documenting the
history of a Data object, starting with external data sources (e.g., data files and URLs)
and including Data operations. In order to conserve memory, AuditTrail objects are
only associated with top-level Data objects (i.e., Data objects that are not components
of Fields or Tuples).
The AuditTrail class is not yet implemented, so there is no constructor and method

documentation.

3.8 Missing Data
Any Data object or primitive value may be marked as missing, meaning that its value is
unknown or undefined. Missing values may be generated as the result of sensor failures,
arithmetic failures (e.g., division by zero), or to mark incomplete data coverage (e.g.,
temperatures are not available for one time step of a model output). The NaN (Not a
Number) value of the IEEE floating point standard is used to represent missing floats

59

and doubles in VisAD, since it has the correct arithmetic semantics (e.g., X .OP. NaN
= NaN for any value X and any operation .OP.).

3.9 FlatFields - Data Operations and Efficiency
There is a natural trade-off between generality and efficiency, so the generality of the
VisAD data model poses a challenge for efficiency. Efficiency is achieved by incorpo-
rating the following rule at all levels of the system:

Hint 2 (VisAD rule of efficiency) Apply all data operations to arrays of values
rather than individual values, and avoid methods that are invoked once per data value.

The effectiveness of this rule was demonstrated in the C implementation of VisAD
[8, 9], which had a general data model like the Java implementation.
The large Data objects in any application are Fields. Most array data in numerical

programs are finite samplings of functions (for example, images are finite samplings of
continuous radiance functions with a pixel for each sample) and these correspond to
Fields. Even arrays that do not correspond to any obvious continuous function can be
represented by Fields whose domains are sets of integers from 1 to N. The obvious way
to implement the Field class is with an array of range sample objects, which would
violate our rule because Field operations invoke methods on each range object. Thus
the Field class is extended by FlatField, which simulates an array of range objects
with arrays of Java primitive values. A FlatField can be used for a Field under the
following two conditions:

1. The MathType of the Field range is a RealType, a RealTupleType, or a Tu-
pleType whose components are all RealTypes or RealTupleTypes (this allows
subsets of a FlatField’s range components to be grouped into RealTupleTypes
to document CoordinateSystems).

2. All range samples have identical metadata, including Units, CoordinateSystems,
shared ErrorEstimates, etc.

FlatFields are appropriate for images, multi-channel images, multi-variate grids,
time series and many other types of numerical data arrays. Complex data may be
implemented by Fields whose range samples are FlatFields. For example, a time
sequence of images may be implemented by a Field whose domain is a set of time
steps, and whose range samples are each images stored in FlatField.

60

In addition to computational efficiency, FlatFields also have better storage efficiency
than Fields. Java primitive data require less storage than Java objects, shared meta-
data objects require less total space, and when possible function range values are stored
in bytes, shorts or ints rather than floats. The FlatField constructor accepts range
sampling Sets for each RealType component of its range. If the size of the sampling
Set for a range component is 255, then values for that component are encoded as in-
dices into that Set and stored in an array of bytes (the 256th code is used to represent
missing values). Arrays of shorts or ints are used for larger set sizes, as appropriate.
The default range sampling Sets are 1-D FloatSets, which cause range values to be
stored as floats.
Numerical precision problems occur and can be very difficult to diagnose when they

do. Thus developers may want to pass DoubleSets to the range sampling Sets argument
of the FlatField constructor, in order to avoid precision problems.
Float.NaN and Double.NaN are used to represent missing float and double values.

This avoids time-consuming explicit tests for missing values, since these IEEE NaNs
have the right arithmetic semantics for missing values.

3.9.1 FlatField Constructors
FlatField is a subclass of FieldImpl. A FlatField object may only be local. The
FlatField class include the following constructors:

Listing 3.46: The FlatField constructors

/∗∗ Fla tF i e l d i s a sampled func t i on whose range i s a Real ,
a RealTuple , or a Tuple o f Reals and RealTuples ; i f range
i s a RealTuple , range_coordinate_system may be non−nu l l
but must have the same Reference as RangeType de f au l t
CoordinateSystem ; domain_set d e f i n e s the domain sampling ;
range_sets d e f i n e sampl ings f o r range va lues − i f range_set [i]
i s nu l l , the i−th range component va lues are s to r ed as doubles ;
i f range_set [i] i s non−nul l , the i−th range component va lues are
s to r ed in bytes i f range_sets [i] . getLength () < 256 , s to r ed in

10 sho r t s i f range_sets [i] . getLength () < 65536 , e t c ;
any argument but type may be nu l l ∗/
pub l i c FlatField (FunctionType type , Set domain_set ,
CoordinateSystem range_coordinate_system ,
Set [] range_sets , Unit [] units)
throws VisADException ;

/∗∗ s im i l a r to the prev ious const ructor , except that i f
range_coordinate_systems [i] i s non−nul l , then the i−th
component o f the range type must be a RealTupleType whose

20 de f au l t CoordinateSystem has the same Reference ∗/
pub l i c FlatField (FunctionType type , Set domain_set ,
CoordinateSystem [] range_coordinate_systems ,
Set [] range_sets , Unit [] units)
throws VisADException ;

61

3.9.2 FlatField Methods
FlatField overrides many of the FieldImpl methods, plus it defines a number of methods
for accessing range values as arrays of doubles and floats, and accessing range metadata
(which are shared by all range samples).

Listing 3.47: The FlatField methods

/∗∗ convert F l a tF i e ld to Fie ldImpl ∗/
pub l i c Field convertToField ()
throws VisADException , RemoteException ;

/∗∗ re turn array o f Units a s s o c i a t ed with each RealType
component o f range ; these may d i f f e r from de f au l t
Units o f range RealTypes , but must be conver tab l e ∗/
pub l i c Unit [] [] getRangeUnits () ;

10 /∗∗ re turn range CoordinateSystem assuming range type i s
a RealTupleType (throws a TypeException i f i t s not) ;
t h i s may d i f f e r from de f au l t CoordinateSystem of
range RealTupleType , but must be conver tab l e ∗/
pub l i c CoordinateSystem [] getRangeCoordinateSystem () ;

/∗∗ re turn range CoordinateSystem as s o c i a t ed with
RealTupleType that i s index−th component o f range
TupleType ; t h i s may d i f f e r from de f au l t
CoordinateSystem of RealTupleType component o f

20 range TupleType , but must be conver tab l e ∗/
pub l i c CoordinateSystem [] getRangeCoordinateSystem (i n t index) ;

/∗∗ re turn array o f ErrorEst imates a s s o c i a t ed with each
RealType component o f range ; each ErrorEst imate i s a
mean e r r o r f o r a l l samples o f a range RealType
component ∗/
pub l i c ErrorEstimates [] getRangeErrors () ;

/∗∗ s e t ErrorEst imates a s s o c i a t ed with each RealType
30 component o f range ∗/

pub l i c void setRangeErrors (ErrorEstimates [] errors)
throws VisADException ;

/∗∗ s e t range array as range va lues o f t h i s F l a tF i e ld ;
the array i s dimensioned
double [number_of_range_components] [number_of_range_samples] ;
copy array i f copy f l a g i s t rue ∗/
pub l i c void setSamples (double [] [] range , boolean copy)
throws VisADException , RemoteException ;

40
/∗∗ s e t range array as range va lues o f t h i s F l a tF i e ld ;
the array i s dimensioned
double [number_of_range_components] [number_of_range_samples] ;
copy array i f copy f l a g i s t rue ∗/
pub l i c void setSamples (f l o a t [] [] range , boolean copy)
throws VisADException , RemoteException ;

/∗∗ get t h i s F l a tF i e ld ’ s range va lues in t h e i r d e f au l t range
Units (as de f ined by the range o f the F la tF i e ld ’ s

50 FunctionType) ; the return array i s dimensioned

62

double [number_of_range_components] [number_of_range_samples] ∗/
pub l i c double [] [] getValues ()
throws VisADException , RemoteException ;

3.10 Immutable Data
Most Data classes and metadata classes are immutable, in order to ensure the thread-
safeness of VisAD applications in distributed computing environments. The only ex-
ceptions are Field and its sub-classes. Field metadata cannot change, but the values
of Field and FlatField range samples can change (as well as the ErrorEstimates asso-
ciated with FlatField range samples). Fields are mutable since they may be very large
and it would be inefficient to have to copy them to change individual range values.

3.11 DataReferences
Since the only way to change the value of an immutable Data object is to replace it with
a different Data object, there is a need for a class to represent variable Data. Thus the
DataReference class defines mutable references to Data objects. In an application, for
example, the variable current_time may be represented by a DataReference object
that refers to a succession of immutable Real objects.

3.11.1 DataReference Constructors
DataReference is an interface that may apply to both local and remote DataRefer-
ence objects. The DataReferenceImpl class applies only to local DataReference ob-
jects, while the RemoteDataReference interface and RemoteDataReferenceImpl class
apply only to remote DataReference objects (see Section 6 for more information). The
DataReference classes include the following constructors:

Listing 3.48: The ImmutableData constructors

/∗∗ cons t ruc t a DataReferenceImpl ob j e c t with the given name ∗/
pub l i c DataReferenceImpl (String name) throws VisADException ;

/∗∗ cons t ruc t a RemoteDataReferenceImpl ob j e c t to prov ide remote
ac c e s s to r e f e r e n c e ∗/
pub l i c RemoteDataReferenceImpl (DataReferenceImpl reference)
throws RemoteException ;

63

3.11.2 DataReference Methods
Generally useful DataReference methods include:

Listing 3.49: The DataReference methods

/∗∗ get MathType o f r e f e r en c ed Data object , or nu l l i f none ;
t h i s i s more e f f i c i e n t than getData () . getType () f o r
RemoteDataReferences ∗/
pub l i c MathType getType () throws VisADException , RemoteException ;

/∗∗ get r e f e r en c ed Data object , or nu l l i f none ∗/
pub l i c Data getData () throws VisADException , RemoteException ;

/∗∗ s e t r e f e r e n c e to data , r ep l a c i n g any cu r r en t l y r e f e r en c ed
10 Data ob j e c t ; i f t h i s i s l o c a l (i . e . , an in s tance o f

DataReferenceImpl) then the data argument must a l s o be
l o c a l (i . e . , an in s tance o f DataImpl) ;
i f t h i s i s Remote (i . e . , an in s tance o f RemoteDataReference)
then a l o c a l data argument (i . e . , an in s tance o f DataImpl)
w i l l be passed by copy and a remote data argument (i . e . , an
in s tance o f RemoteData) w i l l be passed by remote r e f e r e n c e ∗/
pub l i c void setData (Data data) throws VisADException , RemoteException ;

3.12 Application Example: Arrays versus VisAD
Functions

In order to understand how to write numerical applications with VisAD, it is useful to
compare VisAD with C. VisAD and C both allow applications to define complex data
structures from basic primitives. For example, a multi-spectral image can be defined
in C using a structure and an array:

Listing 3.50: a multi-spectral image defined in C

s t r u c t pixel {
f l o a t ir_radiance ;
f l o a t vis_radiance ;

} ;
s t r u c t pixel image [nlines] [nelements] ;

A similar multi-spectral image can be defined in VisAD using RealTupleTypes and
a FunctionType:

Listing 3.51: a multi-spectral image defined in VisAD

RealTupleType location = new RealTupleType (new RealType (" l i n e ") , new ←↩
RealType (" element ")) ;

64

RealTupleType pixel = new RealTupleType (new RealType (" i r_rad iance ") , new ←↩
RealType (" v i s_radiance ")) ;

FunctionType image_type = new FunctionType (location , pixel) ;
Set location_set = new Integer2DSet (nlines , nelements) ;
FlatField image = new FlatField (image_type , location_set) ;

In general, we can list the following analogies between C and VisAD data structuring
tools:

C VisAD
float, double, int RealType
char string[] TextType
struct TupleType, RealTupleType
array FunctionType

In these analogies, C and VisAD syntax differ considerably. However, that kind of
difference should be familiar to programmers with experience in several programming
languages. The important similarities and differences relate to the meanings of these
data structuring tools. Most differences involve metadata integrated into the meanings
of data. For example, VisAD Reals and C floats implement the same set of operations,
but operations on VisAD Reals may invoke Unit conversions and propogate ErrorEs-
timates and missing data indicators (some C implementations also propogate missing
data indicators in the form of IEEE NaNs). C structs and VisAD Tuples have very
similar meanings - they are both fixed length lists of other data structures. However,
VisAD RealTuples may include CoordinateSystems and operations on RealTuples may
invoke coordinate transforms.
The most complex differences exist for the analogy between C arrays and VisAD

Functions, because of the variety of metadata integrated into VisAD Functions. The
rest of this section of the Developers Guide is dedicated to explaining the relation
between arrays and Functions in a series of program examples. With the proper
understanding, you can use Functions anywhere you can use arrays, but Functions
also allow you to express some very complex operations simply.

3.12.1 Subtracting Images as Pixel Arrays in C
The following C code could be used to compute the difference between two multi-
spectral images:

Listing 3.52: Subtracting images as pixel arrays in C

#de f i n e n l i n e s 256
#de f i n e nelements 256

s t r u c t pixel {

65

f l o a t ir_radiance ;
f l o a t vis_radiance ;

} ;

image_difference (image1 , image2)
10 s t r u c t pixel image1 [nlines] [nelements] ;

s t r u c t pixel image2 [nlines] [nelements] ;
{

i n t i , j ;
f o r (i=0; i<nlines ; i++) {

f o r (j=0; j<nelements ; j++) {
image1 [i] [j] . ir_radiance −= image2 [i] [j] . ir_radiance ;
image1 [i] [j] . vis_radiance −= image2 [i] [j] . vis_radiance ;

}
}

20 }

This code assumes a fixed size for its image arguments, but that would not be hard
to generalize. It also assumes a fixed set of spectral bands for its image arguments,
that both images have the same size, that their pixel locations are aligned, and that
image radiance values have the same units and calibration.

3.12.2 Subtracting Images as Pixel Arrays in VisAD
The following Java / VisAD code could be used to compute the difference between
two multi-spectral images, in a pixel-by-pixel manner similar to the C code in Section
3.12.1:

Listing 3.53: Subtracting images as pixel arrays in VisAD

void image_difference (FlatField image1 , FlatField image2)
throws VisADException , RemoteException {
// ex t r a c t p i x e l rad iance va lues from images
double [] [] pixels1 = image1 . getValues () ;
double [] [] pixels2 = image2 . getValues () ;
// loop over s p e c t r a l bands in image1
f o r (i n t i=0; i<pixels1 . length ; i++) {

// loop over p i x e l s in one s p e c t r a l band
f o r (i n t j=0; j<pixels1 [i] . length ; j++) {

10 pixels1 [i] [j] −= pixels2 [i] [j] ;
}

}
// s e t p i x e l rad iance va lues in image1
image1 . setSamples (pixels1) ;

}

This code does not assume a fixed size for its image arguments, and does not assume
that they have only two spectral bands. However, it does assume that both images
have the same size and the same set of spectral bands, that their pixel locations are
aligned, and that image radiance values have the same units and calibration.

66

This code example demonstrates that it is easy to treat VisAD Functions like simple
arrays, extracting their values into ordinary arrays using the getValues method and
setting values from ordinary arrays using the setSamples method.

3.12.3 Subtracting Images as Functions in VisAD
The following Java / VisAD code computes the difference between two multi- spectral
images at a high level, which allows VisAD to integrate all their metadata into the
operation:

Listing 3.54: Subtracting images as functions in VisAD

FlatField image_difference (FlatField image1 , FlatField image2)
throws VisADException , RemoteException {
return (FlatField) image1 . subtract (image2) ;

}

This code only assumes that the two images have the same set of spectral bands. If
necessary it will resample the locations of image2 to the locations of image1, transform
locations from one coordinate system to another and convert location units, convert
radiance units and transform between radiance calibration coordinate systems, and
propogate error estimates and missing data indicators.
This code example demonstrates that Functions can be manipulated at a high level,

similar to array operations in some high-level languages (such as IDL) but integrating
a variety of metadata in those operations. High-level operations on Functions include
basic arithmetic such as add and multiply with other Functions or with Reals, as well
as derivative, resampling, and display.

67

	Introduction
	System Availability
	Package Structure
	Authorship, Copyright, History and Support

	Overview
	A Very Simple Application Example
	A Simple Application Example
	Flexible Design by Reduction to Elements
	The Value of Integrated Metadata
	Toolkit for Designing Interaction Techniques

	Data Model
	MathTypes
	RealType Constructors
	TextType Constructor
	TupleType Constructor
	RealTupleType Constructors
	FunctionType Constructor
	SetType Constructor
	MathType Methods
	ScalarType Methods
	RealType Methods
	TupleType Methods
	RealTupleType Methods
	FunctionType Methods
	SetType Methods
	Application Example: Synthesizing MathTypes
	Application Example: Analyzing MathTypes

	Data Class Hierarchy
	Real Constructors
	Text Constructor
	Tuple Constructors
	RealTuple Constructors
	Field Constructors
	Data Methods
	Real Methods
	Text Methods
	Tuple Methods
	RealTuple Methods
	Function Methods
	Field Methods
	Application Example: Synthesizing Fields

	Units
	Unit Methods
	SI Variables
	BaseUnit Methods
	CommonUnit Variables

	CoordinateSystems
	CoordinateSystem Constructors
	CoordinateSystem Methods

	Sets
	Defining Interpolation Algorithms by Extending the Set Class
	The Delaunay Class for Irregular Sets
	Set Constructors
	Set Methods
	SimpleSet Methods
	Delaunay Constructors

	ErrorEstimates
	ErrorEstimate Constructors

	AuditTrails
	Missing Data
	FlatFields - Data Operations and Efficiency
	FlatField Constructors
	FlatField Methods

	Immutable Data
	DataReferences
	DataReference Constructors
	DataReference Methods

	Application Example: Arrays versus VisAD Functions
	Subtracting Images as Pixel Arrays in C
	Subtracting Images as Pixel Arrays in VisAD
	Subtracting Images as Functions in VisAD

